《学情分析与小学数学教学》学习的心得体会

栏目:教学心得体会发布:2025-01-08浏览:1收藏

第一篇:《学情分析与小学数学教学》学习的心得体会

《学情分析与小学数学教学》学习的心得体会

在这一讲的学习里,使我认识到教师对学情的分析很重要,首先教师要了解每个学生,才能有针对性的去授课。在小学的数学教学里,教师应注重的是学生的课堂兴趣培养。《关注兴趣需求,激发情感动力》这一讲讲的恰到好处,小学数学教学不外乎主要是两个方面:“一个是兴趣;一个是习惯。”这两点都非常重要,因此在教学中,教师要注意培养学生的兴趣,因为兴趣是最好的老师,开门见山的教学学生不一定感兴趣,如果在课前创设情境让学生对所学的知识感兴趣了,教学的效果就达到事半功倍。

因此在教学中,以讲故事,游戏引入或是直观教学的引入都可以使学生对学习数学新知感兴趣。

第二篇:学习《学情分析与小学数学教学》总结

学习《学情分析与小学数学教学》总结

学习了《学情分析与小学数学教学》,我颇有感受。老师以他平实朴素、幽默风趣而又富含哲理的语言,从几个不同角度阐述了学情分析的重要性,以及如何在实际教学中进行学情分析。现将我的学习体会总结如下。

(一)通过学习,我认识到在备课、写教学设计时,一定要考虑学生的实际情况,学生的因素至关重要。我们常说备课要备教材、备学生、备教法…,写教学设计要有学情分析,但对于怎样备学生,怎样进行学情分析,往往片面地理解为就是学生学过哪些,会那些,而对学生其他方面的需求知之甚少。通过学习,我才真正明白学情分析的真正含义。学情不光是学生对知识的掌握情况,还包括学生的学习兴趣、知识需求、思维需求、解决问题的需求、内心需求等方面。一节课怎么设计,怎么上,不能只以教学内容、知识要点来决定,在很大程度上,还要考虑学生的需求和感受,这就是学情分析。我们要努力改变教学思想、教学模式和教学方法,要一切以学生为中心。由关注教师怎么教,到关注学生怎么学,这是教学观念的根本转变,这种转变不仅必要而且是必须的。

(二)关于教学设计时的学情分析,这恰恰是我的薄弱环节,甚至是在进行实际教学设计时,常常被我忽视的一环。在实际备课和教学设计时,我常常是以教学内容为中心,根据教学目标所设定的学生应掌握的知识要点来设计安排一节课的教学,而很少考虑学生的需求。通过学习讲座,我才认识到,这样做是很不对的。这样的教学设计,其实仍然是应试教育时代以“知识”为中心,以“分数”为目标的教学设计。老师关心的是这节课要学生掌握哪些知识,会做什么样的题,而对于学生想什么,需要什么却很少关心。对于教学的重点和难点,对学生的感受和需求从不考虑。而是不厌其烦、一遍又一遍地讲了又讲,重复了又重复,而结果收效甚微。通过学习,提高了认识;通过反思,看到了差距和不足,我一定要把这次培训所学,应用到今后的教学实际中去,努力改变教学设计,改变课堂面貌,提高教学质量。

第三篇:学情分析与小学数学教学

学情分析与小学数学教学

教师的教和学生的学之间如何密切地配合好,与老师对学生情况是否了解有着非常重要的关系。

一、关注兴趣需求,激发情感动力

我们大家都很重视学生学习的兴趣。有人说,兴趣是最好的老师。也有的专家讲过,小学数学教学这点事,不外乎主要是两个方面,一个是兴趣,一个是习惯,这两点都是非常重要的。但是一个老师为了激发、调动学生的学习兴趣,往往会创造一个很有趣味的情境。

二、关注知识需求,满足求知愿望

下面我们向老师们汇报第二个题目——关注知识需求,满足求知愿望。关注知识需求,满足求知愿望。在这里我想多少做一点解释,就是什么叫学生的知识需求,一般来说上课的时候学生不会自己主动举起手来,有的学生说:老师我想学习什么,您教我们得了,那个同学,老师我想学习那个知识,您教给我们得了,一般来说是不会的,对吧,小学生还是习惯于老师这节课学习什么知识,我们大家就学习什么,是吧,这是很正常的。那么我在这时候谈的知识需求,就是我们在进行知识教学当中,从知识的角度看,学生可能会有些什么样的需求,老师要有一定的预见,并且把这种预见纳入到我们的备课过程当中去,然后在课堂教育当中给予体现,我觉得也是对同学的一种尊重,也是对他的知识需求的一种满足。

三、关注思维需求,促进思维发展

第三,关注思维需求,促进思维发展。我在上课时候很注重学生的思维发展,数学课属于思维反响过低的话,那么这节课您最好先别上,您好好再备备课。

四、关注认知误区,避免造成隐患

五、关注解决问题的需求,提高理论联系实际的能力

美国教育家波利亚说“教师讲什么并不重要,学生想什么比这重要一千倍”,

第四篇:学情分析与小学数学教学

学情分析与小学数学教学

作为小学数学老师,要想把课上的精彩、上的高效率,就要在课前做好充分的准备,而准备中重中之重便是对学情分析。我认为要做好学情分析,应从以下几方面进行考虑。

1、了解学生的层次水平。有位著名的学者曾经说过,世界上没有两片相同的叶子。那么对于学生来说,他们的智力、学习基础也是存在着很大的差别。因此,我们在设计课时,要把这个因素考虑进去,让每个学生都能在课上有所收获。

2、了解学生的心理现状。大家都知道兴趣是最好的老师。针对不同年龄段的学生要有不同的教学方法,只有了解了学生的心理特点之后才能更好的设计教案。

3、了解学生的预知能力。老师要在课上做到游刃有余,就必须了解学生在课上会提出什么问题、你讲的知识哪些是他们一看就会,哪些知识是需要老师讲解的,只有这样我们才能做到“会的不讲、难的重点讲”,不仅能提高学习效率,而且能够充分利用课堂时间,做到事半功倍。

4、了解学生对这节内容能预知那些,学生的基础怎样?相关的知识学生掌握得如何?学生对于这个内容的学习兴趣如何等。对于小学阶段的学生应达到什么样的认识水准,能理解哪些基本的基础知识,能具备判断 哪些是非观念等,作为老师在备课中要考虑,要分析。学情分析还有一个重要的方面,就是进行更深层次的挖掘,关注学生的相异构想,了解学生的潜意识,教师要思考:相关的学习能力、学习方法学生掌握得怎样?在教学过程中可能会产生哪些问题?学生可能会产生哪些错误? 如果出现问题时教师如何设置台阶来解决难点?教师要在做认真仔细分析的基础上思考:讲什么? 怎样讲?

5、.学生学习状况分析。所任教班级整体学习情况,有些班级思维活跃、反应迅速,与老师配合比较好,但往往思维深度不够、准确性稍微欠缺;有些班级则较为沉闷,但可能具有一定的思维深度。不同的学生对知识理解掌握的不同,教师应该结合教学经验和课堂观察,敏锐捕捉相关信息,通过提出挑战性的问题、合作等方式尽量取学生之长、补其之短。”对学生个体差异也应分析,学生的家庭文化背景、个人的性格、气质和生理特征等与学生学业成绩具有直接关系。老师必须了解学生的差异,尊重学生的差异,对学生的学习情况进行客观地分析研究。

6、课堂教学的分析。教学对象是学生,每个学生都是完整、鲜活的个体。教学中学生的行为不可能完全按照教师的设计意图来进行,因此,真正的学情源自于课堂,最有效的学情分析应是对课堂教学的高度关注。一方面,通过认真的观察和倾听,及时了解学生所思、所想、所为,并以此为依据合理地调整教学问题和适时地调控教学进程;另一方面,要密切关注学生的学习状态,准确了解学生的体会和感受,从有利于学生全面发展的实际需要出发,有效开发和利用课堂教学中的生成性资源。

学情分析是一个复杂而重要的工作,这就需要我们老师有一个大局意识,统筹观念,并要具备坚强的毅力,做到细心的观察和耐心的总结。

第五篇:学情分析与小学数学教学

专题讲座

学情分析与小学数学教学

教师的教和学生的学之间如何密切地配合好,与老师对学生情况是否了解有着非常重要的关系。所以在写教学设计的时候,都有关于学情分析的内容。其中更多的关注的是学生的学习情况,比如说相关的基础知识掌握的怎么样呢?但是只是这样的话又有点片面。如果只是从知识的角度来了解学生,虽然很重要,但是似乎不够全面,因此想从关注学生需求的角度,谈谈学生学习之前的各种情况,也就是说学生在学习知识的时候,在上课时候,其实他有各个方面的很多需求。对于这方面,如果我们老师对学生需求了解的多一些,了解的全面一些,了解的深入一些,那么对课堂教学和老师之间达成默契,提高课堂教学的效率,那是非常有好处的,下面从这个角度来说一说。

一、关注兴趣需求,激发情感动力

我们大家都很重视学生学习的兴趣。有人说,兴趣是最好的老师。也有的专家讲过,小学数学教学这点事,不外乎主要是两个方面,一个是兴趣,一个是习惯,这两点都是非常重要的。但是我在这里想说,一个老师为了激发、调动学生的学习兴趣,往往会创造一个很有趣味的情境。您创造的那个情境,无论它怎样引起同学的兴趣,一定要和您这节课,这个单元所讲的知识要紧密相配合、紧密联系。如果说两者之间是两层皮的话,那是不可取的,与其要是创造一个与知识联系不大的情境的话,那么这个情境还不如不创设。开门见山,倒也不错,所以说关注学生的兴趣是很重要的,从中我觉得可以激发学生的一种情感动力,这是很重要的。【 案例 1 】

我们举个例子来说,大家看到是一只很可爱的小猴子驮着一条常常的尾巴,我们上课的时候,会给同学们出示这个教具,这就是我们所看到的这只小猴子驮了一条尾巴。而且很明显,小猴子的身子是在一个正六边形上,而它的尾巴是在正四边形上。我们会给同学提出这样一个问题:如果我们把它转动起来,比如说这样转动一次,这样转动两次,然后问同学们:大家猜一猜,至少要转动多少次,猴子的尾巴就会重新回到它的身上来。老师们猜猜看,学生如果要说,他可能猜几次,可能猜几次,对了,很多学生都猜成六次,甚至几乎全班同学都异口同声都说六次。然后我们就用实物往上转一转,这里我们没有实物投影,我只有这样转转大家看,我们一起来数,这个转动一次,然后两次,三次,然后四次,转错了,我重新转。来,我们一起来转转看好吧!大家看,这样转动一次,两次,三次,四次,五次,六次,转了以后同学发现,好像是回来了,猴子尾巴回来了,但是方向却反了,朝那边了,他就觉得不可思议。一开始信誓旦旦的说六次,可是为什么转了六次以后,猴子尾巴没有回到他的身上来,你说产生一种困惑,产生一种需求,这种需求就要探究究竟为什么六次是不对的,当然这时候还有不少同学猜测,老师,看来六次不行,得十二次,于是 老师就带领大家继续转下去,等十二次以后,就回来了,就转到这里来了,大家又高兴了,于是我们就要研究了,为什么不是六次,而是十二次。想不想研究这个问题,学生说想研究,这个时候我们要发给各组学具,发给各组同学的学具是不太一样的。

比如说有的是狮子,这两小组都是狮子,大家会看到,狮子的头在正九边形上,而尾巴在正六边形上,现在老师就可以正确计算了,那么要使狮子的尾巴重新回到它的身上,至少需要转多少次呢?没有问题,十八次,对吧,十八次。还有的小组我们发的是这样的乌龟,乌龟的头在四边形上,身子在正五边形上,这么转、转,得转多少次才第一次回到它的身上来呢,当然他需要转二十次,我们还有一些其他的学具,其他的动物也都很可爱,很可惜我找不到了,所以只拿了这几张请大家来观摩。那么比如我们拿第一个例子来说,至少学习转十二次就可以回来,我们还可以引导同学进一步猜想,如果再继续转下去,继续转下去,下一次猴子的尾巴再回到它的身上应该是多少次呢,小孩很会猜,第二十四次,再下一次,三十六次,再一次,四十八次等等等等,我们就带领大家研究为什么没有六次,没有四次,而是十二次,二十四次。我们就会发现所转动次数,应该是 6 的倍数才能回到这个位置上来,而且还应该是 4 的倍数才能使猴子的尾巴成这样一个方向和状态。因此说所转的倍数、所转的次数应该是 6 的倍数,也同时应该是 4 的倍数,也就是说它应该是 6 和 4 之间那个公有的、共同的那个倍数,我们就把这样的数叫做 6 和 6 的公倍数。

像 12、24、36、48、60、72 等等,都是这样的,而在这个公倍数当中,其中最小的那一个我们就把它叫做最公倍数。好了,我们当年讲最小公倍数就是这样讲的,我们讲了以后,很多老师都很喜欢,纷纷跟我们借教具上这节课。当然后来也有老师问我,您怎么想的让学生在桌子面上转小猴子的尾巴、转狮子的尾巴,让他们通过这种方式学习最小公倍数,又有效,又有趣。说实话,我说我就是好像在几年以前看过一本低幼读物,儿童读物,幼儿园的读物,那个读物里面有一个转和平鸽的那么一个活动,转和平鸽的尾巴,我觉得幼儿园的小朋友通过“转“来达到他的动手能力,达到手口一致的协调性,我觉得效果很好。我想,完全可以搬到我们小学来,五年级讲最小公倍数用这种方式,同学一定特别感兴趣,而且效果应该相当不错,就是这样的。我们北京版教材,有的老师不太清楚,还有北京版教材在编排这个,编辑最小公倍数的教材内容时候,就把我们这个方式也编进教材去了,那我当然也很高兴,因为我们这个方式也得到了专家的认可。好了,这一节课向大家汇报的,我们第一个节目就是要关注兴趣,关注兴趣。【 案例 2 】

再举个例子,五年级的可能性,这是我在北京郊区听这个农村老师,一位男老师讲的可能性,我觉得讲的不错,向老师们来介绍。大家一眼看到四张卡片,分别写的是五、六、七、八。那节课是这样的,两个同学一组,老师发给他们一个线装口袋,当时要求同学们打开,把线装口袋里面的东西都抖落在桌面上,同学就会发现,都是五、六、七、八四张卡片。老师说,好,把它扣回去,打乱,像洗牌一样,打乱,老师说:不再动了。如果这时候两个人你摸一张,他摸一张,如果摸得的数相乘的积,得奇数的话,甲胜;相乘的奇为偶数的话,另外一个同学胜。同学们,你觉得游戏公平吗?老师们猜猜看,同学说公平,还有说不公平的,同学们几乎都说公平,他们都说公平,原因很简单,他们至少看到五、六、七、八四个数当中,有两个奇数,有两个偶数,他们觉得老师给的条件就是公平的,所以顺理成章的这个游戏就应该是公平的。

老师说:大家认为公平,那我们就开始玩,于是两个同时开始玩,你摸一张,他摸一张相乘,你摸一张,他摸一张相乘,结果老师们,很快很快同学们发现了不公平,而且他们发现极度不公平,纷纷举手强烈的要求,跟老师说,老师不公平,这游戏太不公平了,太不公平了。老师说好,你们敢说不公平,这点很好,但是我们要研究,它究竟为什么不公平?我觉得老师这样引导是对的,为什么不公平?于是老师带领同学们在黑板上,就不厌其烦地做了六道题,比如说 5 × 6=30,5 × 7=35,5 × 8=40,6 × 7=42,6 × 8=48,7 × 8=56,同学一看,哇,六道题的结果,只有五七三十五,这是唯一的奇数,其余五个都是偶数,原来这么不公平,他们强烈的找到了原因,发现真的很不公平。

那么到这里我们说教学怎么样呢?我们觉得仍然不到位,咱们有的时候上课,校长,教学干部说你这样教学不到位,什么叫不到位?咱们拿这个例子来说,同学已经感觉到不公平,而且也找到了原因,一个奇数,五个偶数,但是别忘了,我们这一节课的内容讲的是可能性,讲的可能性。老师应该引导同学从可能性这个角度来认识这个问题,才能件件到位。所以老师说,那谁知道这种状态下,这个时候得奇数的可能性有多大,得偶数的可能性又有多大?老师们,有多大,就是要量化,用一个数,通常用一个分数,当然也可以用百分数,只不过五年级这时候没有学百分数,我们就可以用分数来表示可能性的大小,这是高年级讲可能性的特点。

同学不难得出,得奇数的可能性是 1/6,得偶数的可能性是 5/6,而且 1/6 小于 5/6,5/6 大于 1/6,对吧,而且很大于 1/6,可以这么说,5/6 是 1/6 的五倍,对不对? 5/6 是 1/6 的五倍,老师们,五倍,很悬殊的倍数关系。有时候讲到这个时候,我发现很多老师对这个没有什么反应,是吧,一说五倍,觉得好像没什么了不起,五倍有什么了不起,我们轻轻的俩嘴唇一碰,是吧,小数点稍微移动,两倍,原来的数扩大一百倍,是吧,扩大一百倍,一千倍都不在话下,这区区五倍,好像似乎何足挂齿。其实您错了,要关注学生的感觉,五倍其实是个很悬殊的倍数关系。

我给您举个中国的例子,比如说您教两班数学,你的工资比如每月两千元,那位老师跟您兼一样的课程,一样一样的工作量,但是他的工资不是两千,是多少呢?一万,是一万,而且不是这一个月,是年年月月,每月两千前、两千、两千,他一万、一万、一万,我估计您觉悟再高,同事关系再好,您也不会坐在那里心平气和的说,嗨,他工资不就是五倍吗,工资不就是五倍吗,不就是五倍吗,那么轻描淡写,不会的,五倍是非常悬殊的一个倍数关系。同学们对工资当然没有什么概念,但是对刚才的这个游戏他却记忆犹新,为什么?他老输,玩那么多次,他老输,甚至我估计有的同学从开始玩到老师喊停,有可能他连一次都没赢过,都有可能,您说是不是?所以当时就说了,现在我们感觉到了它不公平,而且找到了原因,而且会用分数来表示它可能性的大小很重要。下一步,老师们请注意了,下一步更重要,老师说什么呢?我们能不能改一改,我们能不能把这游戏改一改,改这样它公平一些,这一点非常重要。同学非常记住了,老师能改,能改,因为他隐隐约约已经感受到,只有奇数乘奇数才得奇数,偶数乘偶数得偶数,那个奇数乘偶数,倒霉就倒霉在奇数乘偶数,它也得偶数,所以他想适当的增加奇数,去掉些偶数,所以面对的 5、6、7、8,有些同学就出主意了,老师咱们换得了,把 6 或者 8 改成一个奇数就好办了,不能都改,都改了就没数了,是不是?改一个。

老师们猜猜,学生说改 6 还是改 6,我在旁边听课,您现在猜,很多学生是改 6 还是改 8,我们很多老师,大家觉得改 6 改 8 没区别,不就是一个奇偶性问题吗,是不是,又不是想求它的大小是多少,所以改 6、改 8 是对等的,是一样的,但在同学眼里不是这样的,我那天听到是很多同学纷纷说,老师咱把 6 改改吧,改 6,为什么改 6 ?他们说了,老师您看把这 6,就是说您别忘了,同学手里有四张卡片,这别忘了,有四张卡片,所以他们把 6 举起来,比如说这个,这个不是 6,这是猴子,咱就当作 6,老师您看咱们把 6,咱们把 6 翻过来就是九,这是 6,翻过来就是 9,你看他多会改,是吧,把 6 翻过来就是九,因为八翻过来没有,8 八翻过来还是 8,如果把 8 横过来就行了,是吗,把 8 横过来无穷大,他又不认识,是不是,所以他把 6 改成 9,多好。我估计老师为什么选五、六、七、八,可能蕴含着这个意图,把 6 改成 9。好,现在我们也把 6 改成 9,老师说了,同学们你们看,现在公平了吧,小孩都纷纷说,公平了,但是带有一定猜测性质,说公平了。我想和老师们探讨了,这个时候同学们感觉公平了,他猜测公平,还有没有必要让同学们再玩一玩,刚才玩可以叫做感受不公平,现在玩叫做感受公平,您看还有没有必要带领同学再玩一玩,有吗?有的老师说“有”,有的老师大概说没有,我的意见绝对是没有必要让同学们再玩了。咱们不算时间帐,再玩玩,时间不算怎么办,拖堂怎么办,咱们先不考虑这问题,这是另外一个角度的问题。咱们想说什么呢,刚才在不公平的前提之下,他怎么玩,怎么不公平,我们是有把握的,现在理论上是公平了,可是一组一组一组的玩起来之后,老师们,您能保证每组同学玩的结果都是公平的吗,是吧?比如说玩十次,您能保证那个同学赢五次,这个同学赢五次,能保证吗,不能保证,依然会出现,他赢 6 次,她赢 4 次;他赢 7 次,她赢 3 次,甚至他赢 8 次,他赢两次的情况也一定会出现,而且一般来说,多数组都不会五比五,那么在那种时候如果同学们再嚷嚷起来又质疑了,老师,老师,还是不公平,怎么办呢?怎么办呢,老师们,您说怎么办呢,没办法了,谁也都没办法了。

那时候老师只有一个办法了,非常勉强的,非常苍白无力的办法,就是解释,上课不是不可以解释,但解释不一样,有的是偏重于讲解,有的是偏重于您无奈的辩解,这就很苍白。有的老师的课,我听过,有老师这么解释:同学们,其实你们不知道,理论上是公平的,为什么你玩这个不公平呢?我跟你说,理由只有一个,原因只有一个,就是因为,就是因为我们玩的次数太少,玩的次数太少,你不来十次吗,你玩一百次,你玩一千次,一万次试试。还跟人说,有的玩了二十万次抛硬币,吧,还可以说:同学们,玩的次数越多,可能性越渐显 1/2,结果言多语失,这句话说错了,还说错了。

再一个问题,至少有这么两个特点,一个它是客观的,它是随机的,它是不以人的意志为转移的,不是我想得什么就得什么的,我想视己就视己了,对不对?这是第一。第二它是不以活动的次数多少而改变的,比如抛硬币,是吗,比如我们前一段时间看世界杯,抛硬币,他不论抛多少次,它的正面朝上,或者反面朝上可能性都是各占 1/2,哪怕就是一次,他也是 1/2。我们曾经出过这样的考题,比如说小明抛硬币,一共抛五次,前四次都是正面朝上,问它第五次正面朝上可能性应该是多少,我们几选一,比如 1/2、1/4、1/5、4/5 等等,老师们去选,老师您说第五次可能性应该多少呢,那当然还是 1/2,对吧,还是 1/2,这个不能凭好心,前四次都是正面朝上了,总给反面一个机会,所以反面朝上可能性应该大一些,不,这一次就这一次,跟前几次无关。而在这节课这时候我们老师们就不能保证同学们玩起来每组都是公平的,所以这时候最好就不要再玩了,于是,老师也没有让同学们再来计算,就直接来问,谁说你为什么感觉这时候就是公平的,一下上升了两个台阶,挺好的。当时我听有一个男孩子举手发言说的不错,他说老师您看现在 5、7、9 都是奇数,它们相乘可以得到三个奇数,8 呢和 5 相乘,和 7 相乘,再乘 9,就可以得到三个偶数,这样就公平了,讲的不错。老师又进一步引导一下,说的没错,谁能明确说出来这个时候得奇数的可能性有多大,得偶数的可能性又该多大呢?有同学举手说了,老师得奇数的可能性是 3/6,得偶数的可能性也是 3/6,而 3/6 等于 3/6,用两个分数表达两个事情发生的可能性,并且等号连接起来,通过这样一个游戏,特别通过前后对比来加深学生对等可能性的认识,我们觉得教学是非常到位的,而同学的兴趣也是很高的。

因为你看一直在参与这个过程当中,而且也是在一边学习,一边游戏过程当中参与的,所以效果非常好。而在这里面老师和同学就都不同经历于一个有猜测,公平不公平,对吧,有猜测,到实践,究竟公平不公平,学生说了不算,老师说了也不算,谁说了算数呢,实践说了算数,对吧,实践是检验真理的标准,而且还是唯一的标准。当然上课不一定这么去说,但让同学们能够感悟到实践是非常重要的。通过实践,发现不公平,而更有意义的,发现不公平,不是就此罢休,应该尽可能去改一改,让它变得公平一些,这是发挥人的主观能动作用的一个好时机,我觉得这点是非常重要的。

二、关注知识需求,满足求知愿望

下面我们向老师们汇报第二个题目——关注知识需求,满足求知愿望。关注知识需求,满足求知愿望。在这里我想多少做一点解释,就是什么叫学生的知识需求,一般来说上课的时候学生不会自己主动举起手来,有的学生说:老师我想学习什么,您教我们得了,那个同学,老师我想学习那个知识,您教给我们得了,一般来说是不会的,对吧,小学生还是习惯于老师这节课学习什么知识,我们大家就学习什么,是吧,这是很正常的。那么我在这时候谈的知识需求,就是我们在进行知识教学当中,从知识的角度看,学生可能会有些什么样的需求,老师要有一定的预见,并且把这种预见纳入到我们的备课过程当中去,然后在课堂教育当中给予体现,我觉得也是对同学的一种尊重,也是对他的知识需求的一种满足。【案例】

我举个例子说,好吧,这是我们六年级的一节课,叫做分数乘法当中的第一节,分数乘整数,我向大家汇报的是我曾经上过这节课,分数乘整数,当年的例题是2/9×4,那么我想学生会有什么需求呢,我们在讲这节课的时候,它是一节法则课,那我们就不应该仅仅让同学学会这节课的内容,比如说分数乘整数该怎么上,该怎么做,得多少,不是。因为满足同学另外一个更加深层次的对知识需求,比如说分数乘整数,这个内容与分数相加、分数加法有什么联系,有什么关系,与整数乘法又有什么关系,因为在这节课之前,他在中年级学过整数乘法,对吧,他在五年级学过分数加法,那么分数乘整数,就与整数乘法,与分数加法之间有着密切的联系。通过这个联系,学生可以深入理解分数乘整数的意义,深入理解分数乘整数的算积,并能够更好的掌握分数乘整数的计算方法。

我觉得要让同学了解知识之间联系是很重要的,但是你想同学们不会提出来:老师我有那样的一个需求是不会的,通过我们的教学来完成他的这个需求,来满足他这个需求我觉得是非常重要的。那我课是怎么上的呢,我是这样上的,我给大家说,我就想2/9×4,学生不太容易感受到他体现的,他反映的是求几个相同加数的和的简便运算,因为简便二字的味道不是特别浓,也说2/9×4,不就是4个2/9相加,它们比较起来差别并不特别大。如果把2/9相加的个数增加,再增加,让他充分感受到有进位的加法太麻烦了,做对乘法那么简便,我觉得效果会很鲜明的。所以我上课是这样上的,请大家看,我会给同学出一组分数相加的口算题,大家看,我问问同学们,同学们看这是几,小孩会说2/9,没问题,请做第一道题,谁也不举手,全班抢答,看得几,看谁抢的又对,又快,我把第一题拉开,小孩一看,4/9,前面都会说4/9,没问题,对吧,到现在每逢暑假,我还经常爱上这节课,因为它特别适合在暑假里面上。好了,我又把它拉开了,同学们这道题得几,小孩看了看,6/9,6/9,当然也有同学说了,老师要约分的,要约分,就是2/3了,2/3,好啊约分是2/3,不约分就是6/9,挺好的。这道呢,抢答人更多了,因为它已经形成规律了,8/9,异口同声说,这道题呢,有人说10/9,当然也有同学说1,正在他们乱糟糟的,我就把全打开了,我说这道题多少,全打开了,这么多,让他去看,小孩一看,全笑了,如果听课老师他们也会笑,这么多2/9相加,他一下子谁也说不出得多少,都在笑,我也跟着在笑。

但是我很快就收敛了笑容,我跟同学说,同学们,如果我们真的一个2/9,一个2/9,一个2/9,一个2/9的加下去的话,你会有什么感觉,老师们,尽管远在课程改革之前很多年,我第一次上课已经是20多年前了,那时候我也很尊重学生的感觉,就你尊重他的感觉,那么他也会尊重你的感觉。那么师生之间就能达到很好的情感沟通和交流,这点是非常重要的,是上好课的一个前提,是吗?当然小孩会说,你有什么感觉,无疑的都会说,老师太麻烦了,太麻烦了,是吧?太麻烦了,我说好,有没有,有没有想到办法,有没有不太麻烦的办法呢?有没有不太麻烦的办法?他们就纷纷记住了,老师有,有,用乘法,用乘法,他就告诉你说用乘法来做,用乘法。老师你想,这节课我没有出示课题,我没有告诉他们今天讲分数乘法,我出示只是这么多2/9连加,老师您想,他看着这么多2/9在相加的这样一个算式,他们自己主动说老师有,用乘法,您说是不是在他脑子里面就已经初步构建了一个分数乘法的一个模式,一个模型,也就是说他能够主动的把这样的分数相加题,如果和分母乘法给它相沟通,这就是在进行乘法意义教学,而这种乘法意义教学,不是老师说出来的,不像同学看那个文字,不是机械的去读和记,而是他自己内心的理解和迁移。通过这个迁移来建立分数乘法的概念,我觉得这点是很有意义的。当然我还会问,能用乘法做吗,小孩说:能。好了,如果真的把它改写成乘法算式的话,你现在特别需要知道什么?这是根据学生的需求,他一定会知道,一定想知道,我想知道几个2/9。

那好了,我就再跟同学一块说,我们为了方便,咱们五个五个说,五个,然后十个,我们这么说,数完以后是多少没关系,是吗?比如我这个是28个,那是28个2/9相加,我问同学,28个2/9相加写成乘法算式,什么样呢,大家纷纷都说2/9×28,没问题,在黑板上板书9×28。写完以后我可以说,2/9×28,没问题,是分数乘整数,板述课题,然后说‘是不是天下只有这一道题是分数乘整数呢',学生说不是,当然说不是。但是你举个例子,你编一道分数乘整数题,不用计算,只是编就可以,同学们编出很多这样这样的题,编了很多,很有意思,我们请大家看一看,这是表示我抛出那么多2/9一个情景,是吧,学生编的题不外乎这么多,比如说像一个分数乘一位数的,一个分数乘两位数的,还有分数乘三位数的,当然很多情况下还有编出乘四位数等等,他们很敢编,我们今天只是举这几个例子。让同学编题,我一个不落的都把它写在黑板上,竖着写,写在2/9×28的下面,一般来说能写个六七个,写这么多,学生编的题有什么用呢,我觉得意义非常大。远的不说,这节课两件事可以做,第一说一,课堂板述以来,那个分数乘整数的意义,与整数乘法的意义相同,就是求几个相同加数和的简便运算,这个的话我们取消了,删掉了,不写了,没关系。但是我觉得真正一个具体的算式还是要说出意义就更好,这是第一个意义。第二当这些个新课讲完之后,该练习的时候,我几乎就不再出什么笔答题了,就完全让同学做他们自己编的题,按顺序做,你编哪道题,我做哪道题,同学做自己编的题那他是一种享受,他觉得这个题是那么的真实,那么的生动。有时候我说这谁编题,我可不知道得多少,我真的不知道得多少,同学相信你是刚刚编出来的,对不对?那么他会有一种责任心在编,责任心去做,我一定好好把题做对了,告诉刘老师这道题得多少,因为他都不知道得多少,很有意思。

那么说一,我们举个例子,比如3/7×18,我一定会问同学,谁说3/7×18表示什么,表示什么,同学都会说,老师,3/7×18表示18个3/7是多少,我会说,说的对,说的对,但就是不够明确,谁能够更加明确的说一说3/7×18它表示18个3/7在干嘛,在干嘛,这又有同学说,老师它表示18个3/7在相乘,于是又遭到其他同学反对,课堂尚有同学认识的交锋是非常好看的一件事情,也非常有意思的事情,是吧。同学说老师不对,应该是18个3/7在相加,我会夸张的表扬,多好,大家看,明明是一个乘号,明明是一道乘法题,可是它却表示几个3/7在相加,而且求它们的和是多少,又一次加深了对乘法意义的认识。我还可以说,同学们,3/7×18,既然表示18个3/7在相加,我们能不能把它还原成,还原成这个加法算式呢,小孩说“能”,于是我就带着同学们去加,这么说,3/7+3/7+3/7+3/7+3/7+3/7+3/7+3/7+3/7+3/7,大点声,+3/7,快点,+3/7+3/7+3/7+3/7+3/7,学生读完以后,我这叫习惯性爱挖苦他们,当然有的老师说不许挖苦学生,要尊重学生,我想:善意的,不是不可以。我怎么挖苦他们呢,我说

解锁后支持完整在线阅读或下载编辑海量优质内容资源

《学情分析与小学数学教学》学习的心得体会

第一篇:《学情分析与小学数学教学》学习的心得体会《学情分析与小学数学教学》学习的心得体会在这一讲的学习里,使我认识到教师对学情的分…
点击下载
分享:
热门文章
    热门标签
    确认删除?