数学学习心得体会
第一篇:数学学习心得体会
数学学习心得体会
——在学习中自我成长
金秋十月,我有幸参加了为期近三个月的“国培计划”的培训。工作7年后又以一个学生的身份坐在教室里学习,我感到兴奋、开心,非常感谢学校领导给了我这样一个学习、锻炼、提升自我的机会。
这次培训安排的扎实有序,培训学习的内容主要以专家、特级教师的讲座、报告为主,下校实践和自我研修为辅。每周一至周五,早上八点半到十二点,下午二点半到五点半这一时间段的理论学习,每天都让我感受到不同风格的教师,都听到不同类型的讲座,几乎每天都有思想火花的冲撞。这次培训可以说对我的教育理念、教学行为、理论知识等的提升作用非常之大,开阔了自己的教育视野,感触颇多。现就自己三个月的学习谈几点体会,还请领导、老师们批评、指正。
一、教书育人,育人为先。
西安文理学院文学院副院长张成武教授的讲座,从法律的角度讲了教师的地位及职责。现代教师不仅具有职业特征,更有许多社会约束,也正是因为有这一特征,我深深体会到,在今后的教学中一定要严格依法执教,放平心态教书育人,处理教育上的事情要将事做的圆满,将话说得到位、说的完整,而这往往也是最难做到的。这就需要:
1、把微笑带进课堂。
微笑是人的一种情态语言,人们在适当的时候投以适度的微笑可发挥其无穷的价值。同样,把微笑这种特殊的语言运用到教育教学活动中,会收到意想不到的效果。心理学研究表明,学生是很喜欢见到
教师微笑的,教师经常把笑露在脸上,学生会对老师心怀好感,极愿亲近,自然而然形成一股内在的亲师感,进而对教师所任教的学科产生浓厚的兴趣。经常微笑也会减少我们自己的压力,化愤怒为微笑教学,会减少很多不必要的冲突。实践也充分证明了这一点:当你微笑着找学生谈话,用含笑的眼睛注视学生,会使学生放弃戒备心态,营造一种融洽的气氛;当学生在课堂上因紧张、拘谨,无所适从时,你的笑是一种鼓励;当学生成功了,你的笑无疑是一种褒奖……
2、变“尊师爱生”为“爱生尊师”。
尊师和爱生,长久以来这个话题是师生所熟知的。这两个词并列,只是侧重点不同造成的结果也大不相同。现代教师要摆正心态,先“爱生”,如果变“尊师爱生”为“爱生尊师”,无疑“爱生”乃尊师的前提条件,如果老师不“爱生”,学生亦完全有理由不尊师,正所谓敬人者人故敬之。与变“屡战屡败”为“屡败屡战”同理。
3、对学生多鼓励,少批评。
赏识、赞美、鼓励,是一种巨大的精神力量,它能推动受教育者向既定目标迅猛冲剌。教育的本质是唤醒人而不是改造人,要力图让学生的灵魂感动,动其筋骨而非伤其皮肉。
二、教育理念,不断提升。
陕西省教科所的潘燏老师为我们讲授的《新课程背景下小学数学有效教学策略》的讲座,让我对教材有了更进一步的认识。刚毕业时也教过人教版的教材,而数学课程改革这几年,接触更多的是课改后的新教材(北师大版教材)。一直以来就很疑惑,为什么数学课本中 的知识点这么少,课本上的东西少之又少,而要给学生讲的却很多?听听专家的解释,心里豁然开朗。北师大版课本中一节课的标题是由情境图所命名的,情境图是学生已有的生活经验,而并非这节课就只讲这一知识点。要把握好情境图非常困难,要从图中引出知识,从练习题中找出知识,更要靠自己的挖掘、探索,挖出知识。而这一个个的情境图,全部都是适合我们数学教学的吗?答案是否定的。这也是新课程改革存留的一点小缺憾。听说新的课程标准就要颁布,希望能将课改修补的完美无瑕。通过培训,我深刻的体会到,我们的教材是死的,而教教材的人却是活的,我们要用教材教,而不是教教材。而现今如何将这些情境图合理的应用于数学教学,如何去教教材,是我们应该考虑的问题。在今后的教学中,必须做到两个关注:一是:关注学生,从学生的实际出发,关注学生的情感需求和认知需求,关注学生的已有的知识基础和生活经验,是一节成功课堂的必要基础。二是:关注数学:抓住数学的本质进行教学,注重数学思维方法的渗透,让学生在观察、操作、推理、验证的过程中有机会经历数学化的学习过程,使学生真正体验到学数学的价值,从而爱学数学并从中感受到学习的快乐。要展现思维力度,关注数学方法,体现数学课的灵魂,使数学课上出“数学味”!
北京第二实验小学华应龙老师的《课堂因融错而精彩》,更是深深的触动了我的心灵,让我对课堂中生成的问题处理有了新的认识。以前,我总认为一节好的公开课,就要像行云流水,师生互动要流畅,不能出现预设之外的问题,我也因为一些课堂生成的问题而束手无
策,责怪学生,自感丢脸,最后处理时不了了之。因此为了上好一节这样的课,我总是在公开课之前,反复强调和练习,追求课堂的完美。但这样的课上下来,学生到底有怎样的收获?教师又有怎样的发展?一堂很顺利,没有一丝错误展现出来的课,给人的第一感觉就是“假”,第二感觉就是教学设计有问题。一堂好课,是用学生是否听会,是否理解来判断的,而并非是教师教的是否精彩来决定的!一节真正的课无错是要不得的,每个错误都是有价值的,教师只要在课堂上关注学生的不同声音,尊重学生学习过程中得差错,暴露学生错的根,认真思考,巧妙引导和处理,变错为宝,激发学生的思维浪花,把课堂中的差错当做一种资源而加以利用,那么,我们课堂上的差错,就会变成错不是错,课堂就会呈现智慧的火花,使学生感受到生命成长的快乐。因而课堂上老师要学会装“傻”教师越“傻”,学生就越聪明,最好的学习就是在差错中学习。容错—---错是错;融错-------错不是错;荣错------错还是错。这在我们教育教学的整个过程之中也是同样的道理。当学生犯了错误时,老师要有一个理智的行为,从另一个角度看,这个犯错的学生为你的教学注入了新的血液,正如他说的,有些错误是一定要犯得,早犯比迟犯好。华老师说要因材施教,就是要了解每一个孩子,每一个人都是不同的,不是所有的孩子都能成为数学家,而是数学家小的时候也不都是天才。而且我们的教育不是要把每一个孩子都培养成数学家,社会需要各种各样的人才,数学教育重点是教育,以知识为载体,促进人的发展。
三、自身素养,得以升华。
要想给学生一滴水,教师就必须具备源源不断的活水。这次培训,除了专家、特级教师的讲座,让我在教书育人上有很多感悟以外,还欣赏了音乐、美术,进行了书法训练,学习了计算机在数学中的应用。音乐、美术的欣赏,是我在学习之余舒缓了紧张的情绪,正是这样,才让我深深体会到虽说教师很苦、很累,但是,我们要会在苦累时放松自己,音乐、美术欣赏无疑是个好的方法,要有一个好的心态、好的心情去教学,因为身体是革命的本钱嘛!而书法和计算机的学习,更是让我自身的基本功得到提升。我了解了如何用Word制作一张比较完整的数学试卷,如何用公式及函数在Excel中做成绩统计表,以及简单的PS技术。这在以后的工作中都将成为我自身的宝藏,将更好的帮助我进行数学教学。
在今后的教育教学实践中,我将静下心来采他山之玉,纳百家之长,慢慢地走,慢慢地教,在教中学,在教中研,在教和研中走出自己的一路风彩,求得师生的共同发展,求得教学质量的稳步提高。在这里,我突然感到自己身上的压力变大了。要想不被淘汰出局,要想最终成为一名合格的骨干教师,就要不断更新自己,努力提高自身的业务素质、理论水平、教育科研能力、课堂教学能力等。这就需要今后自己付出更多的时间和精力,努力学习各种教育理论,勇于到课堂中去实践,相信只要通过自己不懈的努力,一定会有所收获,有所感悟。
第二篇:学习数学心得体会
讀《數學學習心理學》心得
北市成功高中 游經祥老師
一、前言
數學教學可說是一種藝術,而且也是教師一直在自我調整,自我成長的一門學問。筆者對數學教育可說是門外漢,有幸參與研讀Richard Skemp所著的《數學學習心理學》,讓筆者從中體會到一些數學教育的大略。這是一本結合心理學理論和數學教學經驗的好書,在研讀討論過程中,讓筆者不時常有『心有戚戚焉』的感覺,也讓筆者感到『教學』專業之中,還有這麼多細密的內涵存在,進而對數學教學的價值觀以及數學教學的意義,有更進一步的體會。由於本書內容豐富,筆者便以分段式的方式提出心得,並期望在每一段落中,給出高中教材的相關例子,以參照這幾年來筆者自己的教學經驗。換句話說,在本文中,筆者一方面肯定本書所提出的概念,另一方面,則也要強調筆者教學經驗的自我印證。在此,我很感謝同事杜雲華老師、蘇意雯老師、蘇慧珍老師的集思廣義,以及洪萬生教授的問題討論。
二、數學概念
我們數學的學習從無到有,頇經過多少歲月學習,及許多師長的引導啟發,再加上我們人類的智力行為,各方面因緣的會聚,數學方能達到如今成熟的地步。人類由活動中吸取經驗,由經驗中學習而化為行為;因此,人類的智力行為乃從經驗,再由經驗、事物的分類、歸類之中,而產生心智中的『歸檔』。在這種心智活動過程中,我們由語言經驗,經分類、歸納,進而將之抽象化,而這抽象化後的事物存在心中,便稱之為『概念』。平常數學中所謂的『定義』,即是將某一數學概念的範圍更加精確地顯示出來。因此,數學中的『定義』,乃是前人心血累積所成的數學概念。
在此,筆者提出高中數學教材中的例子,來對數學概念作一印證。在高一上學期的數系中,有一單元目標是為了幫助學生認識複數系,即C={a+bi|a,bR,i=1}。在此之前,高一學生的心中對於數的概念只有:自然數系N,整數系Z,有理數系Q,與實數系R。因此,要引進複數系時,筆者便從國中時代的一元二次方程式ax2bxc0的公式解及判別式開始引起動機,順便讓學生回憶一下往事,亦即,希望喚醒學生以往的數學概念。進而對判別式Db24ac的正負及實根的個數做個複習。最後,才進入D<0時,公式解中bD的D是何物?以此來引進負數平方根的存在性。在解決這些存疑之前,筆者又2a引進十六世紀義大利數學家卡當(Girolamo Cardano)所提出的問題:把10分成兩個數,使x它們乘積是40。
當時卡當解出的東西為515,他很迷惑515到底是不是『數』。但是,他又大膽地『認定』如果515這種東西如果可以合符『數的運算規則』做計算,則515就是此問題的解。不過,這問題困擾數學家二百多年,到了十八世紀以後,經過尤拉(Euler)、高斯(Gauss)等偉大數學家的努力探索,吾人才日漸揭開複數系的神祕面紗。
經過如此介紹,在一方面,我們可讓數學史『告訴』學生,數系得之不易;另一方面,也可讓學生了解新數系要『如何』建立。根據數學史,了解一個新數系的建立,對超級數學家而言已經不容易了,更何況是凡夫俗子呢?由此可見,一個數學新概念在學生的心智活動中要明確建立,實在相當困難。
再者,筆者想大略談數學『抽象化』的例子:在大學數中的代數學,其中的群(group),環(ring),體(field)的生成,是由日常生中的自然數系、整數系、有理數系、實數系、複數系中的運算性質,以及其概念中加以聯結,所提煉而成的特性及功用。但是,我們當初很難預測,它們結合後會產生這麼多的特性,而再進一步抽象化後所形成的『近世代數』之美麗光茫。我們試以下面例子說明,當中的提煉過程。
例如:有理數系中對『加法』、『乘法』有封閉性,這就是群(group)中的二元運算的來源,其中的結合性、反元素、單位元素皆可由0,1的運算性質推廣得到。因此,經過數系內在蘊涵的特性及功用,再進一步抽象化後便得到『群』定義中的充要條件。最後,再一般化後,便得到更深入的環、體及近世代數的發展,使代數學成為現今數學領域中重要的一個分支。
由此可見,數學概念大都是經由人類生活活動、經驗累積而形成的成果,進而人類將之分類、歸檔,由變因中尋找共通性與不變性,再進一步抽象化,最後在歷史演化的提煉形過程中,將其『不變』的特質再留存歸檔。就如現在的近世代數學中的群、環、體等理論已成熟,數學家便將之視為自然的數學文化而留存歸檔。
三、基模(schema)的特性
筆者覺得『基模』是數學教育上的一個名詞,它大約說明『心理學中的心智結構情形』。因此,筆者在此只有將基模所具有的一些特性,作以下說明:
‧基模可以結合長期所學的相關經驗及概念。
‧基模可以將概念的關係加以分類、融合、轉化。
‧基模是概念之間的縱橫聯繫網。
‧基模可以將多種概念結合、分析而發展出難以預測的特性及功用。
筆者在此以『重複組合』Hnm為例,對基模的特性作下列相應的說明。
例:袋中有a,b,c三種球,各有10個,從袋中任取5球,請問有幾種不同的取法?(A)對沒有Hnm概念的學生,他可以用以下作法,自然討論可得其解答:
a五同:aaaaa,bbbbb,ccccc,共三種。即C3種。○13b四同:aaaab,…,有C3·○22=6種,或P2種。
3c三同二同:aaabb,…,有C3·○22=6種,或P2種。d三同二異:aaabc,…,有C3=3種。○1e二同二同一異:aabbc,…,有C3=3種。○1共21種。
n
運用這種做法,至少學生已有Cn,Pmm的基本概念,以及對5球分類的基本能力。就此nCnm,Pm及對5球分類的三個基本概念來說,它們個別發揮不出解此題的作用。但當學生的思考中將此三種基本概念結合與聯繫,則問題將可以自然地解決。這種結合與聯繫,就是基模的特性之一。當然,其中也用到自然數的四則運算,這是人類最根本的基模,就不必特別指出。以下,筆者亦是如此對待此根本基模。(B)、聰明一點的學生可能會這樣做:
設a類球取x個,b類球取y個,c類球取z個。則xyz5,0x,y,z5且x,y,z為整數(即此方程式之非負整數解。)此時可以列表解之:
x 5 4 3 3 2
y 0 1 2 1 2
z 0 0 0 1 1
故共有3!3!3!3!3!21種。2!2!2!n
運用這種作法的學生至少要有Cn、Pmm、代數方程式的列式,以及解非負整數等概念,其中能將排列、組合的問題轉化成代數的問題,這頇要很強的『反思』能力,即能跳脫問題本身,提昇到更高階層以觀察之,而得到此一作法,這是基模結合力更強的展現。由於基模具有這種將多種概念結合、轉化的特性,難怪引導學生作基模式的學習,是一種很有效的數學教學法。此法的進行,要提醒學生有『居高臨下』的視野,在跳脫問題層次之外,能以更宏觀的思考方向思考之。這是非常難得,而且是更高一層的反思,值得學之。(C)更聰明的學生,可能會這樣做:
同(B)中的假設,而得求xyz5的非負整數解的個數。此時這類學生便將5個球,用5個“1”代表而將之排成一列,再用兩個加號“+”插進一群“1”之中,所分成的三部分就分別定為x,y,z的值,而得到
7!737351C5,即知H5。C5C52!5!
這種做法是經兩次反思而得,先將排列組合的問題轉化成代數方程式問題,為了要求非
nnm1負整數解的個數又轉化成重複排列問題,而得到更簡便的求解方法,進而驗證了Hm。Cm
筆者分析上述(A),(B),(C)這三種作法,主要目的是要說明筆者對基模所列的四種特性,從而使自己對基模的特質,有更進一步的理解。因此,筆者覺得基模本身已經是離開日常經驗與反應,同時,基模可以統合已知知識,進而加強對事物的了解,及對事物的批判思考力。因此,基模是產生真正理解事物的一種心智工具,利用它,我們可以獲取意想不到的新知。
然而萬事萬物,有其利亦有其弊。基模亦可能有其缺點,包括建立過程所費的時間較長,基模有喜新厭舊、顧此失彼的特性,更嚴重者,乃是知識『穩固性』建立的無形障礙。在此,筆者提出基模穩固性的無形障礙,有一個很明確的例子,就是在畢氏發現無理數時,當時數學家們視畢氏的無理數論點為異端,不在此重述。可見,當時數學家們對數學中的數系基模,只穩固在有理數系為其最高階層的數系,至於對於非有理數的存在性,自然會有很大的懷疑。
四、思考層次的分析
x22x22x23。
我們先考慮這問題:試解2x2xx1(解一)、一般學生直觀解之,要先去分母;得到:(x2)2(x2x1)(2x22x2)3(x2)(x2x1)
x24x42(x4x212x32x2x2)3(x3x2x2x22x2)
2x44x37x28x63x39x29x6 2x4x32x2x0
x0,2x3x22x10
1x0,1,。
2(解二)、另外有一些學生先欣賞一下題目,分析問題特性,方程式中皆有因此,學生的做法便利用符號代表ax2及其倒數。
x2x1x2x2,即令=,則原方程式變為a22xx1xx12x2x213a23a20a1或2,即2=1或2=2,故得x0,1,。a2xx1xx
1由上述的兩種解題方法,筆者試圖分析學生的心智活動結構的大概情形如下:(A)、自動化概念
在學習或處理新概念或問題時,基礎概念或基礎理論必頇變得自動化,亦即可以自動浮現心頭。不必重新思考或反映的概念,皆可稱為自動化概念。
在『解一』中的自動化概念,包括分式之去分母,多項式之加減乘及多項式的因式分解。因此,要用“解一”的方法,這些基礎概念頇要已經自動化了,如此解此題才方便。
至於在『解二』中的自動化概念,就包括符號代換、分式之去分母、因式分解(十字交义相乘)、解一元二次方程式等。
因此,要運用『解二』之法者,先要有更高層次思考,以簡禦繁而得到a=
x2的代2xx1換式;之後便是頇要自動化的概念。(B)、心智模型的層次
在上述『解一』中,乃是一般性解題的自然操作活動,也是直覺處理問題的想法。亦即直接由自然的規律(即自動化概念),經過操作、抽象、推廣所蘊育而成的心智模型。這即是Skemp書中所提到的第一型理論。
在『解二』中,頇要跳脫到問題之外,以居高臨下的觀點先審題目之結構,進而運用數學以簡禦繁的精神,以a代表
x2而得到簡單的分式方程式,進而如『解一』之法解之。
x2x1這種心智模型較『解一』更為高層次。這類思考層次可說是反思,自己跳脫題外,思考問題,時時知道自己在做什麼。
接著,筆者再以大學數學中『拓樸學』(topology)的例子,來說明『思考層次』與『思考眼界』有著高低的不同。
記得在國小、國中、高中時代,圓形和三角形是視為完全不一樣的東西,不同的幾何圖形。當時的思考,只限於外形的表現,比較不注重其無形的內涵。因此,在中學時代的數學,直觀思考,圖形的全等性、相似性乃是主要訴求的重點。但是到了大學數學系中的拓樸學,已經忘記了點與點之間的距離,也跳脫了有形物體的局限。故在拓樸學家的眼裡,圓、三角形與皆正方形視為同一類圖形;甚至圓與實心的輪胎也被視為同一類的幾何圖形,而一直線與一點也被視為同樣的幾何圖形。這些觀點,皆已跳脫有形可想像的範圍,已經走到第二型的更高層的思考,難怪Skemp主張數學學習理論皆是屬於第二型的高層反思。其實,數學高階思考大都屬於二階反思。因此,我們可以理解到,經由數學層層抽象化過濾的高階概念,雖然已經遠離現實世界,走向無形抽象空間之中,但是,它卻反而引領我們進入孙宙的本質,一旦賦予科學的內涵,就可以得到實際世界許多令人驚異的結論了。
五、代數與幾何的結合
筆者提出以下例子:
x2y21之兩頂點,P是橢圓上之一點,求△ABP的例:設A(-3,0),B(0,-2)為橢圓94最大面積。
這例題是高中數學教材中,常出現在圓錐曲線單元中的例子;而且也算是較難的例題之一。我們提出兩種解法,再進一步分析這兩種解法過程中與Skemp書中的理論相應之處。
解法一:利用代數方法解之。
設P(3cos,2sin),1|3203cos2sin1021| 1則△ABP面積=
1|66cos6sin| =|3sin3cos3|
=
=|32sin(
故sin(4)3|
4)1時,得最大值 323。
解法二:利用幾何觀點解之。
△ABP中AB底固定,故只要高最大,則△ABP之面積就會最大。因此,利用平行線間之距離固定的特性;再 作L//AB且與橢圓相切於P,則可得最大的高。利用橢圓切線公式得:
242L:yx94x22
39而d(A,L)66213。
166213332。213
這個問題屬於難題,一般學生不易求解,這是因為它頇要許多概念的結合,才能推導出這題的答案,其中包括橢圓的參數化、面積的行列式表示(亦可以用面積的向量表示)、三角函數疊合性質、最大值如何取值等。一般而言,一個問題頇要三個或以上的概念結合才能解決,便可說是一個難題。何況此問題至少要用到四、五個以上的概念,難怪對學生而言,這是一難題,以上是『解法一』的計算過程分析。然而,對於『解法二』而言,它所頇要的概念有:幾何平行概念,三角形面積求法,橢圓切線公式,點到直線之距離等。也就是頇要四、五個以上的概念結合,才能處理這一問題。然而『解法二』的方法是代數與幾何的結合,也就是兩個大系統的結合。Skemp在本書中提到視覺系統及言辭系統。言辭系統不只包含口中發出的聲音,還包含寫在紙上的字;而視覺系統最好的例子就是圖形。然而,兩種系統若能結合,則處理問題的能力便可以更具威力。難怪諾貝爾獎得主Bragg在其八十歲生日時說:他自己總是先有視覺印象然後才產生新靈感。從這些數學教育專家的言談之中,可見以幾何觀點處理代數問題是很有幫助的,筆者提出這例題便是一例。因此,代數與幾何的結合是很重要的後射思考能力。
筆者近日對這三年來的『指定或聯考試題』作分析,發現九十一年指定考科有關幾何或利用幾何概念可處理的問題佔了29%;九十年聯考題這種題目佔了52%;八十九年聯考這種題目佔了46%。筆者所推定的百分比,可能見仁見智,雖然可能有誤差,但是,我們相信平均而言,與幾何相關或利用幾何可以處理的問題佔35%~40%是很自然的。這令筆者也深深感到,現今中學教材幾何的份量實在太少了。我希望數學教學家者能正視此一問題,也希望有改善幾何教學的教材出現。平心而論,幾何中的作圖、作法、推論與證明,可以說對學習數學是很重要的訓諫,不知為何當今編寫數學教材大綱的所謂『專家』,為何對幾何的內容做如此的取捨?現今的教育『專家』到底在想什麼?筆者想不通!故△ABP之面積=
六、理解方式
在Skemp書中的理解方式分為:機械式理解、因果式理解,與邏輯式理解。本書中對此三種理解方式有大略敘述,我們分述如下。
‧機械式理解:能夠將硬背的公式、招數應用於特定問題,但不知背後原因、原理。‧因果式理解:知道數學概念的原因、原理,並能自行推理、推廣。‧邏輯式理解:能夠老練地以數學化符號、術語搭配邏輯推
数学学习心得体会
本文2025-01-08 00:08:11发表“学习培训心得体会”栏目。
本文链接:https://www.sowenku.com/article/59564.html
- 专题13 大作文-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题13 大作文-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题12 微写作-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题12 微写作-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题11 名著阅读-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题11 名著阅读-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题10 语言文字运用(选择题组)-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题10 语言文字运用(选择题组)-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题09 语言文字运用(选择+简答题)-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题09 语言文字运用(选择+简答题)-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx