《分式》知识点归纳与总结

栏目:其他总结发布:2025-01-07浏览:1收藏

《分式》知识点归纳与总结

一、分式的定义:

一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。

二、与分式有关的条件

①分式有意义:分母不为0()

②分式无意义:分母为0()

③分式值为0:分子为0且分母不为0()

④分式值为正或大于0:分子分母同号(或)

⑤分式值为负或小于0:分子分母异号(或)

⑥分式值为1:分子分母值相等(A=B)

⑦分式值为-1:分子分母值互为相反数(A+B=0,)

三、分式的基本性质

分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,其中A、B、C是整式,C0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:

注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。

四、分式的约分

1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。分子分母公因式的确定方法:

1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分

1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

(依据:分式的基本性质!)

2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

◆通分时,最简公分母的确定方法:

1.系数取各个分母系数的最小公倍数作为最简公分母的系数.2.取各个公因式的最高次幂作为最简公分母的因式.3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.六、分式的四则运算与分式的乘方

分式的乘除法法则:

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:

分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为:

分式的乘方

解锁后支持完整在线阅读或下载编辑海量优质内容资源

《分式》知识点归纳与总结

《分式》知识点归纳与总结一、分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。二、与…
点击下载
分享:
热门文章
    热门标签
    确认删除?