初中数学教师培训心得—关于几何画板在数学教学中的应用及体会(最终定稿)

栏目:精品范文发布:2025-01-10浏览:1收藏

第一篇:初中数学教师培训心得—关于几何画板在数学教学中的应用及体会

培训心得

——关于几何画板在数学教学中的应用及体会

2月18日到2月20日我参加了沁源县教育局中学数学组教研培训,本次研讨的几何画板的应用,对我以后的教学工作,起到了很好的效果,尤其在做动态几何问题时,非常感谢李来芳老师介绍了几何画板这个软件,对于这个软件我认真地进行了学习,以下是我对本次学习的一些体会:

在初中数学中,有相当一部分的知识具有一定的抽象性,特别是平面几何的内容,我们经常会听到学生有这样的反映:几何难教,几何难学。“难”的原因之一就是图形关系复杂,变化多样。再之就是老师不能将图形的任意位置展示给学生,在给出一个或有限的几个图形之后,就将一些重要的几何规律简单地介绍给了学生。而学生在解题时,由于图形位置变化,或位置关系复杂,就变得茫然不知所措了。我认为几何的精髓实质就是在不断变化的几何图形中,研究不变的规律。如:在平面中,不论四边形如何变化,顺序连接四边形各边中点所得的四边形永远是平行四边形;不论三角形的形状如何改变,它的中位线总是平行且等于底边的一半。而用传统的教学手段,在黑板上作的图形是静态的,缺乏操作活动,这就掩盖了极其重要的几何规律,不能被直观地观察到。几何中的各种关系和规律是在变化中被发现和掌握的,但传统的教学没有变化过程,不能把数量关系和空间关系联系起来,从而不利于规律的发现。用《几何画板》就可以解决上述

问题。它提供了旋转、平移、缩放、反射等图彻变换功能,可度量、计算,通过拖动,移动、动画等完全可以让几何图形运动起来,同时保持各种关系。它能很好的把数和形结合起来,可以随时看到各种情况下的数量关系及其变化,能把数和形的潜在关系及其变化动态地显现出来。

通过进两天半的学习,我对《几何画板》辅助教学的有一些思考:有什么不正之处恳请专家指正。

1、在教学使用中,要讲究步骤和方法,做到适时适量,符合学生的认知规律。运用《几何画板》教学,可减少老师的讲解,且助于教师的讲解。

2、善于利用《几何画板》的动态环境,启发学生的思维,从运动中找出不变的数学规律,诱发、激活并激励学生学习的内部动因,培养分析问题、解决问题的能力。

4、应在中学教育中开设《几何画板》选修课,不仅要老师掌握,并要求有条件的学生掌握其使用,从而解决学习中的数学问题。

5.尤其几何画板在中考压轴题中起着非常重要的作用,它把函数的动态问题刻画的淋漓尽致,使学生非常直观形象的看到多种运动变化情况。

以上,是我对本次学习《几何画板》在数学课堂教学中应用而得的一点体会。在今后的教学中我会尝试使用几何画板,使课堂教学生动形象,效果极佳!

第二篇:几何画板在初中数学教学中应用

几何画板在初中数学教学中应用

数学是一门严谨的科学,它具有严密的逻辑性和演绎性.“现代信息技术的广泛运用正在对数学课程内容、数学教学、数学学习等产生深刻的影响.教学中要重视利用信息技术来呈现、以往课堂教学难以呈现的内容.”在传统的教学中由于缺少某些必要的教具和动画演示,许多概念和性质对应的图形无法准确生动表示,学生只能在老师的解释和粗略的草图下进行理解,背离了数学来源于生活,又高于生活的本质,致使学生普遍认为数学抽象难学.另外,一些繁难的计算也浪费了大量时间,使课堂效率降低.为改变这些弊病,老师的教学方式和手段就必须改变.在多媒体基本普及的今天,信息技术的力量使上述问题的解决成为可能的和可行的.“有条件的地区,教学中要尽可能地使用函数计算器、计算机以及有关软件,这种现代教育手段和技术将有效地改变教学方式,提高教学的效益。”(课程标准)

在众多的信息技术中,《几何画板》软件不仅具有强大的作图、计算及动画功能,而且具有即时性与交互性,在课堂教学中适当使用《几何画板》软件辅助教学可提高教与学的质量.

经过学习和不断实践,尝试使用几何画板教学,收到了良好的教学效果。下面结合实际谈谈利用几何画板软件设计初中数学课的几点做法。

1.创设问题情境,使学生自主探究

数学是从问题开始的。每一节数学课都离不开问题,那么是教师

一道一道的讲解呢?还是由学生自己探究呢?我想这应该不是当代教师的问题。关键是问题情境的创设对学生有没有吸引力。例如:在讲解函数的最值问题时,用画板提出了这样的问题:在圆的内接矩形中,边长比是多少的矩形面积最大?(请用画板软件探索结果)

学生们很快就投入到操作和实践中,通过移动圆上的动点,比较边长的关系,不久便得出了结论:圆的内接正方形即边长比为1的矩形面积最大。教师接着又问,究竟是为什么圆的内接正方形是圆的内接矩形中面积最大的呢?学生们你一言,我一语互相讨论起来,进而在教师的引导下,利用二次函数求最值的方法,得出了证明„„ 学生在课上,经历了探索——猜想——证明,这三个数学学习的必须阶段,使得知识成为条件化的知识,加深了印象并提高了学习数学的兴趣。

2.数形结合,发展学生空间想象能力

众所周知,数形结合是一种很重要的数学思想,数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微”。“数形结合”是学习数学的重要方法,用图形解释抽象的数学现象形象、直观。因此多数教师都非常重视数形结合的教学,上课时尽量地画好图形,力求使图形展现出其变化的趋势。但是无论怎么画,怎么用一个又一个的幻灯片给学生展示,也只能给出一个“死图”,而利用画板平台教学,则可以绘制一幅幅有形有色会运动的“活”图,真正实现数形结合,增大课堂容量,达到良好的教学效果。

3.创造一个动态的、可视的教学情景,能使抽象问题形象化、直观化,激发学生的学习热情和积极性

函数是数学的重要内容,二次函数是初中教学中的一个难点。尤其是图像和各系数的关系这一内容,学生理解起来有很大困难。可以利用画板画出二次函数的图像,再适时地改变各系数的值,让学生观察图象的变化,从而可以很轻松地掌握这一规律。学生在初中首次接触到函数及其图象时难以真正理解函数定义中两个变量的对应关系及一次函数的图象是条直线,而二次函数的图象是抛物线.这时可打开几何画板用画点工具先在x轴上任意作一个点a,以点a的横坐标x为自变量,计算出对应的函数值y,然后以x,y作为点的横、纵坐标绘制点b(x,y),然后 利用动画演示追踪b点的轨迹,就可得到一次函数和二次函数的图象,同时可将b点的坐标绘制成表格.这时结合动画和表格引导学生观察表格中数据的变化讲解函数自变量和应变量的关系时,学生就能更容易理解函数的定义了,将抽象的数学思维转化为形象的图形演示,还可以使教师省去画表格的时间,提高课堂容量. 4.体现数学美,激发学生学习数学的兴趣

“数学是一种冷而严肃的美”可是它的美究竟体现在什么地方呢?教师也很难说清楚,学生更是云里雾里。在初中阶段,和谐的几何图形、优美的函数曲线都无形中为我们提供了美的素材,在以往为了让学生感受,教师花费很大的精力、体力去搜集图片,资料,在黑板上无休止地画图甚至还着色。如今,利用画板几下就可以绘出

金光闪闪的五角星、旋转变换的正方形组合等等一系列能体现数学美丽一面的图形。用它们来引入正题,学生会很快进入角色,带着问题、兴趣、期待来准备听课,效果可想而知。

例如:在讲解三角形内角和定理应用时,我首先在屏幕上迅速制作了一个有颜色变化的三角形,同学们很快就被吸引,教师跟着提出问题。三角形的三个角的度数和是多少呢?学生们七嘴八舌,议论纷纷,当教师用画板的度量功能和计算功能得出它的三个角的和为180度时,学生们惊讶不已。立刻就有同学着手证明,在总结出一般解法之后,教师进一步提出问题,四边形、五边形、六边形、七边形„„内角和的读数和是多少呢?一节课在积极热烈的气氛中进行着。

以上是教学中应用《几何画版》进行初中数学教学设计的几点做法和想法。《几何画板》作为一种新的认知工具,其独特优势是任何传统的教学手段和模型所无法替代的,而且有良好的教学效果,在实践中,教师们通过自已的努力一定会创造出更加实用和更加符合学生认知规律的方案,为学生的学习更好地服务!

充分利用媒体来优化数学课堂教学,改变一堂课的设计理念。只要我们教师充分了解学生,一心为学生的学习服务,就一定能把现在的数学课堂改造成学生学习的乐园。

第三篇:浅谈几何画板在初中数学教学中的几点应用

浅谈几何画板在初中数学教学中的几点应用

澄迈思源实验学校 罗海文

前言:随着新课改的实施和“减负增效”工作的深入开展,课堂教学的单一化、程式化势必成为学生智力开发、学生创新精神和实践能力培养的绊脚石。教学手段及教学方法的改革势在必行,积极有效地采用先进的手段和技术, 必然会推动课堂教学结构、教学思想以及教学理论体系的改革与发展。数学这门课程,作为自然科学的基础学科,学生学得好与坏,将直接影响学生素质的提高,因此作为数学教师必须在思想观念、教学方式、教学手段等方面都要发生深刻的变革,多媒体计算机在数学教学中的应用,其教学手段的直观性,内容的丰富性,特别是在许多无法用实物教学的课程中起着无可替代的作用。它能极大的激发学生的学习兴趣,活跃课堂气氛;便于多方位地提高学习效果;在数学教学中能克服许多常规教学中无法解决的困难;便于增加课堂的容量,提高课堂效率。

摘要:当我们从数学的本质特点和学生的认知特点出发,运用“几何画板”这种工具,通过数学实验这种教与学的方式,去影响学生数学认知结构的意义建构,帮助学生本质地理解数学,培养学生的数学精神、发现与创新能力时,我们就把握住了数学教育的时代性和科学性。

关键字:几何画板 数形结合 数学思想方法 数学规律 兴趣

面向新标准新教材的课件设计与制作首当其冲是课件设计理念的转变,几何画板具有很强大的动态教学演示功能,是我们数学教师制作课件的首选工具,它不仅是一个教学工具,更是一个学生用来学习数学(特别是几何)的有用的学习工具。应用几何画板可以把教师的“教”与学生的“学”有机的结合起来,它可以让我们在课堂上让学生充分活动起来,课堂气氛活跃起来,使学生真正成为学习的主人,让我们教师真正成为教学的引导者。下面结合我在数学教学中的一些实践,就数学软件中的几何画板在初中数学教学实践中的几个方面的应用谈谈我的一些体会和看法。

一、实现数形结合

华罗庚说:“数缺形少直观,形缺数难入微。”函数的两种表达方式解析式和图象之间常常需要对照。为了解决数形结合的问题,在有关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。

例如,我们在讲述二次函数的应用时,就涉及到利用二次函数的图象解一元二次方程的解,从而实现函数与方程这两种数学模式之间的互相转换。二次函数yx2x1的图象与x轴交点的横坐标x1,x2就是一元二次方程x2x10的两个根。在其探究活动中,本人采用如下教学设计进行探究:

问题1:x2x10的解可以看做抛物线yx2x1和直线y=0交点的横坐标,如果方程变形成x2x1,那么方程的解也可以看成怎样的两个函数的交点的横坐标?

教师演示:利用几何画板快速作出二次函数yx2和一次函数yx1的图象,找出它们的两个交点A、B,再利用菜单栏中的度量工具,计算出两点的横坐标,让学生深深感受到几何画板的方便、快捷。问题2:如果方程变形成x2x1,那么方程的又可以看成哪两个函数图象的交点的横坐标?

教师演示:利用几何画板快速作出抛物线yx2x和直线y=1的图象,找出它们的两个交点A、B,再利用菜单栏中的度量工具,计算出两点的横坐标。

教学实践表明:利用几何画板画二次函数图象求一元二次方程的解,真正意义上实现了函数和方程两种模式之间的转换,传统教学是不能做到这一点的。因为在以往的教学中,虽然画出了有关函数的图象及交点,但对于求交点的横坐标,它的本质还是在利用求根公式解一元二次方程。

二、揭示几何规律

作为教材的课本一般都是直截了当的给出了发现的结果。圆周角的定理也不例外,隐去了数学家们曲折的探索、分析、归纳、猜想等发现过程。作为教师、如何通过自己的教学设计,再现这一过程,引导学生参与知识的探讨与发现活动,培养学生正确、科学的思维方式,运用基本的数学思想方法研究问题。因为具体的数学知识随着时间的推移可能会遗忘,而这些数学思想方法学生将会终身受益,本人引导学生自己发现圆周角定理的教学设计如下:

引导1:在圆心角的学习中,我们知道一条弧确定一个圆心角,即“一弧对一角”,对于圆周角,一条弧所对的圆周角有多少个呢?

教师演示:演示弧AB 所对的圆周角有多少个,先同时选定边AC和BC,在显示菜单中设为“追踪对象”,拖动顶点C在弧ACB上运动,瞬间即形成了无数个圆周角,给学生以强烈的视觉冲击,这是传统教学手段所不能达到的效果。同时可看到,不论C 运动到什么位置,始终构成AB所对的一个圆周角。

引导2:上面的演示说明了一条弧所对的圆周角有无数个,由于它们顶点的变化,这些角的形状与位置也随着变化,它们的大小是怎样的关系呢?

教师演示:在几何画板中依次选定A、C、B,在度量菜单中选择“角度”,然后拖动点C,可以发现∠ACB的角度始终没有变化。通过以上演示观察,启发学生得出猜想:同弧所对的圆周角相等。

爱因斯坦说过:“兴趣是最好的老师”,是推动人们去寻求知识、探索真理的一种精神力量。尤其在数学课堂教学中,激发学生的学习兴趣,使他们由厌学、苦学变为喜学、乐

解锁后支持完整在线阅读或下载编辑海量优质内容资源

初中数学教师培训心得—关于几何画板在数学教学中的应用及体会(最终定稿)

第一篇:初中数学教师培训心得—关于几何画板在数学教学中的应用及体会培训心得——关于几何画板在数学教学中的应用及体会2月18日到2月20日…
点击下载
分享:
热门文章
    热门标签
    确认删除?