超声基础知识总结

栏目:其他总结发布:2025-01-07浏览:1收藏

超声基础知识总结

物理基础

基本概念――人耳听觉范围:20-20000HZ

超纵声波频率>20000HZ――纵波(疏密波):粒子运动平行于波传播轴;

诊断最常用超声频率:2-10MHZ

基本物理量:频率(f)、波长(λ)、声速(c);三者关系:λ=c/f

人体软组织的声速平均为1540m/s,与水的声速相近;骨骼的声速最高,相当于软组织平均声速的2倍以上。

超声场:发射超声在介质中传播时其能量所达到的空间;简称声场,又称声束。

声束的影响因素:探头的形状、大小;

阵元数及其排列;

工作频率(超声的波长);

有无聚焦及聚焦的方式;

吸收衰减;

反射、折射和散射等。

声束由一个大的主瓣和一些小的旁瓣组成。超声的成像主要依靠探头发射高度指向性的主瓣并接收回声;旁瓣的反向总有偏差,容易产生伪像。

声场可分为近场和远场两部分

(1)近场声束集中,呈圆柱状;

直径――探头直径(较粗);

(横断面声能分布不均匀)

长度――超声频率和探头半径。

公式:L=(2r·f)/c

L为近场长度,r为振动源半径,f为频率,c为声速

(2)远场声束扩散,呈喇叭状;声束扩散角越小,指向性越好。

(横断面声能分布较均匀)

声束两侧扩散的角度为扩散角(2θ);半扩散角(θ)。

超声波指向性优劣指标是近场长度和扩散角。

影像因素:增加超声频率;――近场变断、扩散角变小;

增加探头孔径(直径)――但横向分辨率下降。

采用聚焦技术――方法:固定式声透镜聚焦;

电子相控阵聚焦;

声束聚焦:采用声束聚焦技术,可改善图像的横向和(或)侧向分辨力。

固定式声透镜聚焦――将声透镜贴附在探头表面。

常用于线阵探头、凸阵探头;

可提高横向分辨力,但远场仍散焦。

电子相控阵聚焦――(1)利用延迟发射是声束偏转,实现发射聚焦或多点聚焦;可提高侧向分辨力;

常用于线阵探头、凸阵探头;

(2)动态聚焦:在长轴方向上全程接收聚焦。

(3)利用环阵探头进行环阵相控聚焦;

可改善横向、侧向分辨力;

(4)其他聚焦技术:如二维多阵元探头。

超声物理特性:

一、束射特性(方向性)――是诊断用超声首要的物理特性;

(如反射、折射、聚焦、散焦)

大界面:指长度大于声束波长的界面;大界面的回声反射有显著的角度依赖性。

入射声束垂直于大界面时,回声反射强;

入射声束与大界面倾斜时,回声反射减弱甚至消失。

两种介质存在真声阻抗,是界面反射的必要条件。

声强反射系数(R1)=(Z2-Z1)2/(Z2+Z1)

Z1,Z2代表两种介质的声阻抗;声阻抗=密度×声速

界面回声反射的能量与界面形状密切相关:垂直于凹面――聚焦;

垂直于凸面――散焦;

垂直于不规则面――乱散射。

超声界面反射的特点:非常敏感。

人体许多器官如肝、脾、胆囊的包膜、腹壁各层肌肉筋膜以及皮肤层都是典型的大界面。

小界面:指小于声束波长的界面。其后散射(背向散射)回声无角度依赖性。

后散射:超声遇到肝、脾等实质性器官或软组织内的细胞、包括成堆的红细胞(称散射体),会发生微弱的散射波。散射波向四面八方分散能量,只有朝向探头的微弱散射信号――后散射(背向散射),才会被检测到。

现代超声诊断仪正是利用大界面反射原理,能够清楚显示体表和内部的表面和轮廓;还利用无数小界面后散射的原理,清楚显示人体表层,以至于内部器官、组织复杂而细微的结构。

二、衰减特性――衰减与超声传播距离和频率有关;

衰减的原因主要有吸收、散射、声束扩散。

软组织平均衰减系数:1dB/cm·MHz;

蛋白质成分是人体组织衰减的主要因素(占80%)。

衰减规律:骨>软骨>肌腱>肝、肾>血液>尿液、胆汁;

超声的分辨力:显示器上能区分声束中两个细小目标的能力或最小距离。

影像因素:超声波得频率;

脉冲宽度;

声束宽度(聚焦);

声场远近和能量分布;

探头类型;

仪器功能(二维图像中像素多少、灰阶的级数多少等)。

分类:空间分辨力(与声束特性有关)

――轴向(纵向)分辨力:与超声频率(正)和超声宽

度(负)有关;理论值:λ/2

横向分辨力:与探头厚度方向上声束的宽度和曲面聚焦性能有关;――常采用透镜聚焦

侧向分辨力:与探头长轴方向上声束的宽度有关;

――常采用相控聚焦

细微分辨力――宽频带和数字化声束处理;

对比分辨力――与灰阶级数有关;

时间分辨力――单位时间成像速度即帧频

超声的生物学效应――声功率:单位时间内探头发出的功率。单位:W或mW;

声强:单位面积上声功率。单位:W/cm2或mW/cm2;

ISPTA:空间峰值时间平均声强(mW/cm2)

ISPPA:空间峰值脉冲平均声强(W/cm2)

分贝:两个声强的比值;超声系统可控制的最大能量与最小能量之比为动态范围。

生物学分类――热效应:诊断用超声一般不会造成明显的温度升高;(mW/cm2级)

空化效应:可形成气体微泡;诊断用超声尚未得到证实;

对细胞畸变、染色体、组织器官的影响;

高强聚焦超声(HIFU):热凝固和杀灭肿瘤细胞作用;

(KW/cm2级)

强烈机械震荡――用于碎石治疗;

在物理治疗学方面的作用(W级,一般0.5-3

W/cm2)

超声辐射剂量是超声强度与辐射时间的乘积。

热指数(TI):1.0以下无致伤性,胎儿应调至0.4以下;眼球应0.2以下;

机械指数(MI):指超声驰张期的负压峰值(MPa数)与探头中心频率(MHz)的平方的比值。1.0以下无致伤性,胎儿应调至0.3以下;眼球应0.1以下;

超声声学造影应采用低机械指数,可以防止微气泡破裂,提高造影效果。

多普勒超声技术的基础及应用

多普勒效应的公式:fd=2Vcosθf0/c――V=fd

c/2f0cosθ

在超声医学诊断中,V为红细胞运动速度;fd为多普勒效应产生的红细胞散射回声的频移;c探头发射的超声在人体组织中的传播速度;f0为探头发射的超声频率;θ为探头发

射的超声的传播方向与红细胞运动方向间的夹角。

分类――脉冲多普勒:选择性接收回声信号,所需检测位置的深度用延迟电路完成;

连续多普勒:无选择检测深度的功能,但可测很高速的血流;

高脉冲重复频率(HPRF)多普勒:增大检测血流的能力;可有多个取样容积。

多普勒超声所检测的不是一个红细胞,而是众多的红细胞,各个红细胞的运动速度及方向不可能完全相同,因此,出现多种不同颜色的频移信号,被接受后成为复杂的频谱分布(波形),对它用快速傅立叶转换技术(FFT)进行处理后,把复杂的频谱信号分解为若干个单频信号之和,以流速-时间曲线波形显示,以便于从中了解血流的方向、速度、时相、血流性质等问题。

脉冲多普勒技术的局限性:

(1)最大频移即最大测量速度受脉冲重复频谱频率的限制(fd=PRF/2)

(2)PRF与检测深度(d)的关系:d=c/2PRF,说明检测深度受PRF的影响;

(3)检测深度(d)与速度(v)关系:vd=c2/8f0cosθ,为常数,v、d相互制约;

(4)当被检测目标的运动速度超过PRF/2时,出现混迭现象。

增大脉冲波多普勒技术检测速度、检测深度的方法:

降低发射频率;

移动零位基线;

减低检测深度;

增大超声入射角(θ),但cosθ在分母位置,值越小计算出速度值误差越大,所以此法不可取。

用HPRF的频谱多普勒:fd=HPRF/2

彩色多普勒――原理:以脉冲多普勒技术为基础,用运动目标显示器(MTI),自相关函数

计算(自相关处理技术),数字扫描转换、彩色编码等技术,达到对血流的彩色现象。

三基色――红、蓝、绿三色;三基色混合时,可产生其他彩色,称为二次色;

红色加绿色产生黄色(二次色),就以红-黄表示正向高速血流。

种类――速度型彩色多普勒:以红细胞运动速度为基础;

能量型彩色多普勒:以红细胞散射能量(功率)的总积分进行编码;

速度能量型彩色多普勒:

显示方式――速度-方差显示:朝向探头―黄色;背向探头―青蓝色。

速度显示:朝向探头―红色;背向探头―蓝色;明暗表示快慢。

方差显示:高速血流显示时从单一彩色变为五彩镶嵌。

能量显示:适应于对低速血流的显示;明亮度表示多普勒振幅。

局限性――(1)受入射角的影响;

(2)超过尼奎斯特频率极限(PRF/2)时,彩色信号发生混迭;

(3)检测深度与成像帧频及可检测流速间的互相制约;

(4)对二位图像质量的影响;

(5)湍流显示的判断误差。

彩色多普勒技术的调节方法:

1、彩色标尺(PRF)的选择:中、低速血流――速度显示方式;

高速血流――速度-方差及方差显示方式;

2、发射超声频率:检测较浅表的器官、组织及经腔道检测――高频超声;

对高速血流的检测――低频超声;

对低速血流的检测,达到被检测深度的情况下―高频超声;

3、滤波器调节:低速血流――低通滤波;高速血流――高通滤波;

4、速度标尺:腹部及外周血管――低速标尺;心血管系统――高速标尺;

5、增益调节:检测开始时,用较高的增益调节,使血流易于显示;然后再降低增益使血流现象最清楚而又无噪音信号。

6、取样框调节:取样框应包括需检测区的血流,但不宜太大,使帧频及显像灵敏度下降;

7、零位基线的调节:零位基线下移,可增大检测的速度范围;

8、余辉调节:persistence调节钮可使帧频图像重叠,增大信/噪比,使低速度、低流量的血流更易于显示清楚;

9、扫查范围与方向的调节:较小的扫查范围(角度)可增加帧频,彩色显像更清楚。与血流方向相同的扫查方法,可使彩色显像更敏感,更清晰。

10、消除彩色信号的闪烁:可选用高速度标尺、高通滤波抗干扰,最佳方法是令病人屏住呼吸

频谱多普勒

血流流动学基础知识――一般规律:当雷诺数(Re)>2000时成为湍流

能量守恒定律:ΔP=4V2max;估算跨瓣压、心腔及肺动脉压;

质量守恒定律:ρAV=恒定(连续方程),计算瓣膜口面积;

频谱多普勒技术的调节方法:

1、多普勒种类的选择:中、低速血流――脉冲多普勒;

高速血流――连续多普勒

2、滤波条件:检测低速血流,用低通滤波;对高速血流,用高通滤波;

3、速度标尺:选择与被检测血流相匹配的速度标尺;

4、取样容积:对血管检测,取样容积应小于血管内径;

5、零位基线:可增大频移测量范围;

6、频谱信号上下翻转:便于测量及自动包络频谱波形;

7、超声入射角:心血管系统检查θ≦20°;外周血管检测θ≦60°

频谱宽度(频带宽度):表示在某一瞬间取样容积中红细胞运动速度分别范围的大小。

层流――窄频谱;

湍流――宽频谱;

取样容积小――窄频谱;

取样积大――宽频谱;

大动脉――窄频谱;

外周小动脉――宽频谱;

超声诊断仪

超声探头―核心部分:压电材料,如天然石英晶体、钛酸钡、锆钛酸铅、压电有机聚合物;

吸声材料(压电晶片背面):产生短促的超声脉冲信号,提高纵向分辨率;

匹配层(声能压电晶片前面):保护压电材料;使压电材料与人体皮肤之间的声阻抗相近;减少声能损失,提高探头灵敏度;

种类――电子扫描探头:线阵探头:采用电子开关控制;阵子呈直线排列;

凸阵探头:采用电子开关控制;阵子呈弧形排列;

相控阵探头:扫描角度80-90,最大深度20cm;用于心脏检查

机械扫描探头:扇形扫描探头;单晶片;电机驱动;

环阵(相控)探头;电子相控聚焦;电机驱动;

其他

旋转式扫描探头等

频率――单频探头:中心频率固定的探头(频带较窄);

变频探头:可根据临床需要选择2-3种发射频率;

宽频探头:采用宽频带复合电材料(发射频率范围:2-5MHz、5-10MHz、6-12MHz);接收时分三种情况:

选频接收:选择某一特定的1-3个中心频率;

动态接收:随深度变化选取不同的频率;

宽频接收:接收宽频带内所有频率回声;

高频探头:频率高达40-100MHz,如皮肤超声成像、超声生物显微镜等。

阵子数――是超声探头质量的重要标志。

1个阵元由4-6个阵子分组构成;

阵子数愈多,理论上成像质量愈好。

采用高密度探头,可提高声束扫描线的密度,图像分辨率显著提高。

超声成像

解锁后支持完整在线阅读或下载编辑海量优质内容资源

超声基础知识总结

超声基础知识总结物理基础基本概念――人耳听觉范围:20-20000HZ超纵声波频率>20000HZ――纵波(疏密波):粒子运动平行于波传播轴;诊断…
点击下载
分享:
热门文章
    热门标签
    确认删除?