数量关系知识点总结(精选合集)
第一篇:数量关系知识点总结
数量关系知识点总结
一,能被3,9整除的数的数字特性
①
判断3/9的倍数的方法是“划”
②
“A是B的2倍(一半)”则“A+B”是3的倍数
③
3/9的倍数加减乘3/9的倍数结果还是3/9的倍数
④
“A+X”是3/9的倍数,则A的各个数字之和加X也是3/9的倍数
⑤
求几个数之和除以3/9余几,用“划”的方法
⑥
一个除以3余2的数加上一个除以3余1的数和能被3整除
一个除以3余2的数减去一个除以3余2的数差能被3整除
⑦
三个连续自然数之和是3的倍数
能被11整除的数,这个数奇数位的和与偶数位的和之差是11的倍数
二,倍数关系
如果a:b=m:n(m,n互质)
a是m的倍数
如果ab=mn(m,n互质)
b是n的倍数
如果a=bmn(m,n互质)
a土b是m土n的倍数
aXb是mxn的倍数
注:①题目中出现“比例,分数,倍数”等形式优先考虑倍数关系
②2是质数中唯一的偶数,题干中出现质数优先考虑2的特殊性
三,直接带入法
1.求某数最大或最小,一般猜选项中的第二大或第二小
2.求操作次数时,一般猜选项中的最大或最小
选项罗列一般用直接代入
四,工程问题
工作总量=工作效率X工作时间
如果问题问的是总量,一般设工作总量为X
如果问题问的不是总量,一般设工作总量为某些数(速度,时间,效率,分母)的最小公倍数
工作总量=人数X时间(默认每个人的效率为1)
总量一定,效率与时间成反比
五,行程问题
1.等时间平均速度公式:V=V1+V2+V3+………Vnn
路程=速度X时间
2.等距离平均速度公式:1V=1n(1v1+1v2+1v3+………1vn)
平均速度=总路程总时间
注:等时间平均速度大于等于等距离平均速度(当v1=v2=vn时取等号)
迎面相遇时间=相距路程速度和
追击相遇时间=相距路程速度差
V顺=V船+V水
V船=V顺+V逆2
V逆=V船﹣V水
V水=V顺﹣V逆2
火车完全在桥上的时间=(桥长﹣车长)÷速度
火车从开始上桥到完全过桥的时间=(桥长+车长)÷速度
六,容斥问题
标志:出现“既……..又…………,两者,三者都………,或都不……….”
条件1+条件2+两者都不满足=总数+两者都满足
当问题中求只满足某个条件个数时用画图加减(两集合,三集合皆可)
条件1+条件2+条件3+三者都不满足=总数+只满足两者+2倍三者都满足
条件1+条件2+条件3+三者都不满足=总数+满足两者﹣三者都满足(三个条件两两组合时用第二个公式)三集合七,年龄问题
主要特点:时间变化年龄相应变化,但年龄差始终不变,倍数关系在变小。
(大数﹣小数)÷3=年龄差
大数﹣年龄差=年龄较大者
小数+年龄差=年龄较小者
八.经济利益问题
总价=单价X销售量
利润=售价﹣成本
总利润=单件利润X销售量
利润率=利润÷成本=(售价﹣成本)÷成本=售价÷成本﹣1
定价=成本X(1+期望的利润率)
期望的利润率=成本X成本利润率
折扣后卖价=定价X折扣的百分数
第二篇:数量关系知识点总结
山东省考数量关系常用知识点总结
第一章 带入与排除法 一,直接带入法
直接带入法常用于多位数问题,不定方程问题,同余问题,年龄问题,周期问题,复杂行程问题和和差倍比问题,并与其它运算方法相结合,带入排除法不仅仅意味着把选项带入题干,而且在计算过程中,一边计算一边比较答案选项,很可能算到一半答案就出来了。
二,倍数特性法
倍数特性法是一种特殊的带入排除法
1,2,5—后一位; 4,25—后两位; 8,,125—后三位 3—数字和除以三; 9—数字和除以9 7—末一位的两倍与剩下的数之差为7的倍数
7--末三位与剩下数的差(大数减小数)是7的倍数 11—奇数位之和与偶数位之和的差是11的倍数(1)直接倍数法
两个数的和为a,差为b,则两个数分别为a+b/2,a-b/2.(2)因子倍数法
当题干中涉及小数的时候,相乘不一定保留原来的倍数关系,2和5因子相乘后会消失,但是3,7,9,11,13等质因子会一直存在
(3)比例倍数法(和差倍比)
若a:b=m:n,则说明a占m份,是m的倍数;b占n份是n的倍数,(m与n互质)a+b占m+n份,是m+n的倍数,a-b占m-n份是m-n的倍数 三,综合特性法
大小特性,奇偶特性,尾数特性,余数特性,幂次特性,质数特性
(1)两个数字和差为奇,二者奇偶相反;两个数字和差为偶,二者奇偶相同。(2)两个数字的和为奇数,二者差也为奇数;两个数字和为偶数,二者差也为偶数
(3)正整数加,减,乘运算中,每个数最后N位,经过同样运算,可以得到结果最后N位
经典例题:
奇偶运算基本法则 【基础】奇数±奇数= ; 偶数±偶数= ; 偶数±奇数= ; 奇数±偶数=。【推论】
一、任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。
二、任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。
倍数关系核心判定特征
如果,则 a是m 的倍数; b是n 的倍数。
如果,则 a是m 的倍数; b是n 的倍数。如果,则应该是 m±n 的倍数。
【例1】两个数的差是2345,两数相除的商是8,求这两个数之和?()
A.2353 B.2896 C.3015 D.3456
【解析】:两个数的差为奇数,所以两个数的和也应该为奇数,排除掉B和D,两数相除商为8,即a:b=8:1,所以a+b 是9的倍数,所以选C
【例2】:一单位组织员工乘车去泰山,要求每辆车上的员工数相等。起初,每辆车22人,结果有一人无法上车;如果开走一辆车,那么所有的旅行者正好能平均乘到其余各辆车上,已知每辆最多乘坐32人,请问单位有多少人去了泰山?()
A.269 B.352
C.478 D.529
【解析】:每辆车22人,结果有一人无法上车,即总人数除以22余1,也就是总人数-1能被22整除,即能同时被2和11整除,首先排除掉B和C,A和D减1后都能被2整除,只要看下能不能被11整除即可,所以答案为D.【例3】某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?
A.329 B.350
C.371 D.504
【解析】:这是2011年的国考题。如果设去年男员工人数为x时,那今年男员工人数则为(1-6%)x=0.94x。也就是说今年男员工人数含有0.94的因子,即能被0.94整除,答案选A。
所以熟练掌握数字特性法对于解决某一类数学运算非常有效,所以考生须熟记几个非常常用的特性,比如因子、倍数、因子、比例特性。
【例22】(江苏2006B-76)在招考公务员中,A、B两岗位共有32个男生、18个女生报考。已知报考A岗位的男生数与女生数的比为5:3,报考B岗位的男生数与女生数的比为2:1,报考A岗位的女生数是()。A.15 B.16 C.12 D.10
【答案】C,【解析】报考A岗位的男生数与女生数的比为5:3,所以报考A岗位的女生人数是3的倍数,排除选项B和选项D;代入A可发现不符合题意,所以选择C。【例23】(上海2004-12)下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?()
A.XXXYXX B.XYXYXY C.XYYXYY D.XYYXYX
【答案】B,【解析】因为这个六位数能被 2、5整除,所以末位为0,排除A、D;因为这个六位数能被3整除,这个六位数各位数字和是3的倍数,排除C,选择B。【例24】(山东2004-12)某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?()A.33 B.39 C.17 D.16
【答案】D,【解析】答对的题目+答错的题目=50,是偶数,所以答对的题目与答错的题目的差也应是偶数,但选项A、B、C都是奇数,所以选择D。
【例25】(国2005一类-
44、国2005二类-44)小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是多少元?()A.1元 B.2元 C.3元 D.4元
【答案】C,【解析】因为所有的硬币可以组成三角形,所以硬币的总数是3的倍数,所以硬币的总价值也应该是3的倍数,结合选项,选择C。
【注一】很多考生还会这样思考:“因为所有的硬币可以组成正方形,所以硬币的总数是4的倍数,所以硬币的总价值也应该是4的倍数”,从而觉得答案应该选D。事实上,硬币的总数是4的倍数,一个硬币是五分,所以只能推出硬币的总价值是4个五分即两角的倍数。
【注二】 本题中所指的三角形和正方形都是空心的。
【例26】(国2002A-6)1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?()
A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁
【答案】D,【解析】由随着年龄的增长,年龄倍数递减,因此甲、乙二人的年龄比在3-4之间,选择D。
【例27】(国2002B-8)若干学生住若干房间,如果每间住4人则有20人没地方住,如果每间住8人则有一间只有4人住,问共有多少名学生?()。
A.30人 B.34人 C.40人 D.44人
【答案】D,【解析】由每间住4人,有20人没地方住,所以总人数是4的倍数,排除A、B;由每间住8人,则有一间只有4人住,所以总人数不是8的倍数,排除C,选择D。
【例28】(国2000-29)一块金与银的合金重250克,放在水中减轻16克。现知金在水中重量减轻1/19,银在水中重量减轻1/10,则这块合金中金、银各占的克数为多少克?()A.100克,150克 B.150克,100克 C.170克,80克 D.190克,60克 【答案】D,【解析】现知金在水中重量减轻1/19,所以金的质量应该是19的倍数。结合选项,选择D。
【例29】(国1999-35)师徒二人负责生产一批零件,师傅完成全部工作数量的一半还多30个,徒弟完成了师傅生产数量的一半,此时还有100个没有完成,师徒二人已经生产多少个?()A.320 B.160 C.480 D.580
【答案】C,【解析】徒弟完成了师傅生产数量的一半,因此师徒二人生产的零件总数是3的倍数。结合选项,选择C。
【例30】(浙江2005-24)一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问原木箱内共有乒乓球多少个?()A.246个 B.258个 C.264个 D.272个
【答案】C,【解析】每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。因此乒乓球的总数=10M+24,个位数为4,选择C。
【例34】(北京社招2005-11)两个数的差是2345,两数相除的商是8,求这两个数之和?()A.2353 B.2896 C.3015 D.3456 【答案】C,【解析】两个数的差是2345,所以这两个数的和应该是奇数,排除B、D。两数相除得8,说明这两个数之和应该是9的倍数,所以答案选择C。
【例35】(北京社招2005-13)某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院共有多少个座位?()A.1104 B.1150 C.1170 D.1280 【答案】B,【解析】剧院的总人数,应该是25个相邻偶数的和,必然为25的倍数,结合选项选择B。
【例36】(北京社招2005-17)一架飞机所带的燃料最多可以用6小时,飞机去时顺风,速度为1500千米/时,回来时逆风,速度为1200千米/时,这架飞机最多飞出多少千米,就需往回飞?()A.2000 B.3000 C.4000 D.4500 【答案】C,【解析】逆风飞行的时间比顺风飞行的时间长,逆风飞行超过3小时,顺风不足3小时。飞机最远飞行距离少于1500³3=4500千米;飞机最远飞行距离大于1200³3=3600千米。结合选项,选择C。
【例37】(北京社招2005-20)红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到排头,然后立即返回队尾,共用10分钟。求队伍的长度?()A.630米 B.750米 C.900米 D.1500米 【答案】A,【解析】王老师从队尾赶到队头的相对速度为150+60=210米/分;王老师从队头赶到队尾的相对速度为150-60=90米/分。因此一般情况下,队伍的长度是210和90的倍数,结合选项,选择A。
第二章
转化归纳法
一,化归为一法
如果题干中没有涉及某个具体量的大小,并且不影响最终结果,我们可以用化归为一法,将这个量设为某一个计算的数值。
一般应用于工程问题,混合比例问题,和差倍比问题,加权平均数问题,流水行船问题,往返行程问题,几何问题和经济利润问题。
※其中,设“1”思想是设“1”或设“100”或设“最小公倍数”,(每题只能设一次)二,比例假设法—利用数字矛盾
尽管假设数字会与题干已知条件矛盾,但我们仍然可以强行假设某一个数字,然后利用倍数关系对推算出来的矛盾双方进行比较,按照比例放大或缩小即可,假如一次假设计算过程中出现分数或小数,可以二次假设或重新假设方便计算的量。※(采用假设比例法时,必须有一个量固定不变,其它两个量成比例关系)三,工程问题(重点必考点)
工程问题是研究工作量,工作时间和工作效率之间的关系 工作量=工作时间*工作效率
核心思想:化归为一法,比例假设法,特值法
主要分类:1.基础运算型;2.同事合作型;3.先后合作型;4.交替合作性(注意周期)5.撤出加入型;6.两项工程型;7.三项工程型 工程问题经典题型:
1.某行政村計劃15天完成春播任務1500畝,播種5天後,由於更新機械,工作效率提高25%,問這個行政村會提前幾天完成這1500畝的春播計劃? A.4 B.3 C.2 D.1 2.某工廠的一個生產小組,當每個工人在自己的工作崗位上工作時,9小時可以完成一項生產任務。如果交換工人甲和乙的工作崗位,其他人的工作崗位不變時,可提前1小時完成任務;如果交換工人丙和丁的工作崗位,其他人的工作崗位不變時,也可提前1小時完成任務。如果同時交換甲和乙、丙和丁的工作崗位,其他人的工作崗位不變,可以提前多少小時完成這項任務? A.1.6 B.1.8 C.2.0 D.2.4 3.有20人修築一條公路,計劃15天完成。動工3天後抽出5人植樹,留下的人繼續修路。如果每人工作效率不變,那麼修完這段公路實際用多少天? A.16 B.17 C.18 D.19 4.單獨完成某項工作,甲需要16小時,乙需要12小時,如果按照甲、乙、甲、乙、„„的順序輪流工作,每次1小時,那麼完成這項工作需要多長時間? A.13小時40分鍾B.13小時45分鍾C.13小時50分鍾D.14小時
5.甲、乙兩車運一堆貨物。若單獨運,則甲車運的次數比乙車少5次;如果兩車合運,那麼各運6次就能運完,甲車單獨運完這堆貨物需要多少次? A.9 B.10 C.13 D.15 6.某計算機廠要在規定的時間內生產一批計算機,如果每天生產140臺,可以提前3天完成;如果每天生產120臺,要再生產3天纔能完成,問規定完成的時間是多少天? A.30 B.33 C.36 D.39 7.甲、乙兩單位合做一項工程,8天可以完成。先由甲單位獨做6天後,再由兩單位合做,結果用6天完成了任務。如該工程由乙單位獨做,則需多少天纔能完成任務? A.8 B.12 C.18 D.24 8.甲1天做的工作等於乙2天做的工作,等於丙3天做的工作。現有一工程,甲2天可完成。問乙與丙合作要多少天完成? A.12天 B.5天 C.2.4天 D.10天
9.一只木桶,上方有兩個注水管,單獨打開第一個,20分鍾可注滿木桶;單獨打開第二個,10分鍾可注滿木桶。若木桶底部有一個漏孔,水可以從孔中流出,一滿桶水用40分鍾流完。問當同時打開兩個注水管,水從漏孔中也同時流出時,木桶需經過多長時間纔能注滿水?
A.8分鍾 B.9分鍾 C.10分鍾 D.12分鍾
10.一個游泳池,甲管注滿水需6小時,甲、乙兩管同時注水,注滿要4小時。如果只用乙管注水,那麼注滿水需多少小時? A.14 B.12 C.10 D.8 答案及解析:
1.中公解析:本題答案選C。原來的工作效率為100畝/天,提高25%後則每天播種125畝,剩餘的1000畝需要8天播完,因此可以提前2天完成任務。
3.中公解析:本題答案選D。設每人每天乾活1個單位,那麼,題意可以理解為15人乾活需要乾滿20天。因為有5個人另乾了3天,即相當於15個人乾了一天的活,所以15人現在只需乾活20-1=19天。
6.中公解析:本題答案選D。生產的計算機總量不變,每天生產120臺比每天生產140臺多用6天,故每天生產140臺需要120³6÷(140-120)=36天,故規定時間為36+3=39天。本題也可用方程法求解。
第三章 典型解题技巧 一,十字相乘法—本质就是一个简化方程
※ 算出来的是总量比,如要算单位比,再除以单价。二,构造设定法(与极端思维法配合使用)
根据题目要求,直接进行构造,如有必要,可以回头验证构造结果。我们构造的只是满足题目的情况之一,不是唯一。
三,极端思维法(当题干中出现至多,至少,最多,最少,最大,最小时)使用极端构造思维构造极端思维时可能得到的是非整数解:
如果题目问最大时,就往小取整;如果题目问最小时,就往大取整。四,枚举列举法
1.直接枚举说满足条件的所有情况(当满足条件情况较少时用)
2.当答案要求数字很大时,我们可从较小的数字出发,总结归纳出通用规律 N条直线可将平面分割成n(n+1)/2个部分
(2,4,7,11,16,22,29,37,46,56)差为(2,3,4,5,6,7,8,9,10)五,逆向思维法(除以2,加1→减1,乘以2)
1.逆向推导型:将运算过程完全颠倒,从后往前逆推。
2.正反互补型:若“正面”不好求解,用总体剔除与之互补的“反面”求解。十字相乘法:
十字相乘法用来解决一些比例问题特别方便。但是,如果使用不对,就会犯错。
(一)原理介绍
通过一个例题来说明原理。
某班学生的平均成绩是80 分,其中男生的平均成绩是75,女生的平均成绩是85。求该班男生和女生的比例。方法一:男生一人,女生一人,总分160 分,平均分80 分。男生和 女生的比例是l : 1。
方法二:假设男生有A,女生有B。(A * 75 + B85)/(A 十B)= 80 整理后A = B,因此男生和女生的比例是1 : 1。方法三:
男生:75 5 80 女生:85 5 男生:女生= 1 : l。
一个集合中的个体,只有2 个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A 的个体与取值为B 的个体的比例。假设A 有x , B 有(1 一X)。
AX + B(1 一X)= C X =(C 一B)/(A 一B)1 一X =(A 一C)/ A 一B 因此:X :(l 一X)=(C 一B):(A 一C)上面的计算过程可以抽象为: A C 一B C B A 一C 这就是所谓的十字相乘法。十字相乘法使用时要注意几点:
第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。.某体育训练中心,教练员中男占90 %,运动员中男占80 %,在教练员和运动员中男占82 %,教练员与运动员人数之比是 : A 2: 5 B l: 3 C 1: 4 D l: 5 答案:C,分析:
男教练:90 % 2 % 82 % 男运动员:80 % 8 % 男教练:男运动员=2 % : 8 %= 1 :4 2 .某公司职员25 人,每季度共发放劳保费用15000 元,己知每个男职必每季度发580 元,每个女职员比每个男职员每季度多发50 元,该公司男女职员之比是多少 A.2: 1 B 3: 2 C 2: 3 D.1: 2 答案:B 分析:职工平均工资15000 / 25 = 600 男职工工资:580 30 600 女职工工资:630 20 男职工:女职工=30 : 20 = 3 : 2 3 .某城市现在有70 万人口,如果5 年后城镇人口增加4 %,农村人口增加5.4 %,则全市人口将增加4.8 %。现在城镇人口有()万。A 30 B 31.2 C 40 D 41.6 答案A 分析:城镇人口:4 % 0.6 %
4.8 % 农村人口:5.4 % 0.8 % 城镇人口:农村人口=0.6 % :0.8 %=3 : 4 70 *(3 / 7)= 30 4 .某班男生比女生人数多80 %,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20 %,则此班女生的平均分是: A 84 分 B 85 分 C 86 分 D 87 分 答案:A 分析:假设女生的平均成绩为X,男生的平均Y。男生与女生的比例是9:5。男生:Y 9 75 女生:X 5 根据十字相乘法原理可以知道,X=84 5 .某高校2006 毕业学生7650 名,比上增长2 % .其中本科毕业生比上减少2 % .而研究生毕业数量比上增加10 % ,那么,这所高校今年毕业的本科生有:
A 3920 人B 4410 人C 4900 人D 5490 人 答案:C 分析:去年毕业生一共7500 人。7650 /(1 + 2 %)= 7500 人。本科生:-2 % 8 % 2% 研究生:10 % 4 % 本科生:研究生=8 % : 4 % = 2 : 1。7500 *(2 / 3)= 5000 5000 * 0.98 = 4900 6 资料分析:
根据所给文字资料回答121 一125 题。
2006 年5 月份北京市消费品市场较为活跃,实现社会消费品零售额272.2 亿元,创今年历史第二高。据统计,l-5 月份全市累计实现社会消费品零售额1312.7 亿元,比去年同期增长12.5 %。
汽车销售继续支撑北京消费品市场的繁荣。5 月份,全市机动车类销售量为5.4 万辆,同比增长23.9 %。据对限额以上批发零售贸易企业统计,汽车类商品当月实现零售额32.3 亿元,占限额以上批发零售贸易企业零售额比重的20.3 %。
据对限额以上批发零售贸易企业统计,5 月份,家具类、建筑及装潢材料类销售延续了4 月份的高幅增长,持续旺销,零售额同比增长了50 %。其中,家具类商品零售额同比增长27.3 %,建筑及装演材料类商品零售额同比增长60.8 %。同时由于季节变换和节日商家促销的共同作用,家电销售大幅增长,限额以上批发零售贸易企业家用电器和音像器材类商品零售额同比增长13.6 %。
.北京市2006 年5 月份限额以上批发零售贸易企业社会消费品零售额占社会消费品零售总额的百分比约为:
A.50.5 % B.58.5 % C , 66.5 % D.74.5 % 答案:B 分析:(32.3 / 2 0.3 %)/ 272.2。结果和160 / 270 相当。接近60 %。所以选B。
.若保持同比增长不变,预计北京市2007 年前5 个月平均每月的社会消费品零售额:
A .将接近255 亿元B,将接近280 亿元C .将接近300 亿元D .将突破300 亿元 答案:C 分析:(1312.5 / 5)*(l + 12.5 %)。12.5 %=l / 8。(1312.5 * 9)/ 40 接近300。
2006 年5 月份,限额以上批发零售贸易企业中,家具类商品零售额占家具类和建筑及装演材料类商品零售额的比例是:A.27.4 % B.29.9 % C.32.2 % D.34.6 % 答案:A 分析:两种方法。
方法一:比较常规的做法假设2005 年家具类所占比例为X。X *(l + 27.3 %)+(l 一X)*(l + 60.8 %)= l + 50 % X = 32.2 %。
【32.2 % *(l + 27.3 %)】/【32.2 % *(l + 27.3 %)+(l 一32.2 %)*(1 + 60.8 % 0)】= 27.4 % 整个过程计算下来,至少5 分钟。方法二:十字相乘法原理.最快. 家具27.3 %,近似为27 %;建筑60.8 %,近似为61 %。
家具:27 % 11% 50 % 建筑:61 % 23 % 家具:建筑=11 % : 23 %大约等于1 : 2。注意这是2006 年4 月份的比例。建筑类2006 年所占比例为:l *(l + 27.3 %)/ [ 1 *(l + 27.3 %)+ 2 *(l + 60.8 %)= 1.27 /(1.27 + 3.2)= 1.27 / 4.5 = 28 %。和A 最接近。124 .下列说法正确的是:.2006 年1-5 月份北京市每月平均社会消费品零售额比去年同期增长12.5 % 11.2006 年5 月份家具类、建筑及装潢材料类、家电类限额以上批发零售贸易企业零售额的增长率相比较,建筑及装潢材料类增长最快 1ll.2005 年,北京市机动车类销售量约为4.36 万辆
A .仅1 B .仅11 C.I 和11 D.II 和111 答案:C 分析:1 一5 月份全市累计实现社会消费品零售额1312.7 亿元,比去年同期增长12.5 %。累计增长A/B=同比增长(A/5)/(B / 5)。I 正确,11 正确,文中直接找答案。5.4 /(1 + 23.9 %)约等于4.36。125 .下列说法肯定正确的是:
A.2006 年前5 个月中,5 月份的社会消费品零售额最高
B.2006 年5 月,几类商品的零售额都比前4 个月高
C.2006 年5 月,限额以上批发零售贸易企业零售额比前4 个月都高
D .至少存在一类商品,其2006年前5个月的零售额同比增长不高于12.5%,答案:D 分析:1 一5 月份全市累计实现社会消费品零售额1312.7 亿元,比去年同期增长12.5 %,而5 月份各类零售增长率都超过了12.5 %。因此可以肯定,至少存在一类商品,其2006 年前5 个月的零售额同比增长不高于12.5 %。构造题型题目解析:
当题干中出现“至少„„(才)保证„„”、“至少„„”、“最„„最多(少)„„”、“排名第„„最多(少)”等字眼时,均可判定该题为最值问题。
常见题型:
1.最不利构造:
特征:至少(最少)„„保证;方法:答案=最不利的情形+1。
2.多集合反向构造:
特征:都„„至少„„;方法:反向、加和、做差。
3.构造数列:
特征:最„„最„„,排名第„„最„„;方法:构造一个满足题目要求的数列
2012-河北42.要把21棵桃树栽到街心公园里5处面积不同的草坪上,如果要求每块草坪必须有树且所栽棵数要依据面积大小各不相同,面积最大的草坪上至少要栽几棵?()
A.7 B.8
C.10 D.11
【答案】A
【解析】本题属于构造数列题型。要使面积最大的草坪栽种的树最少,就要保证其他的草坪栽种的树最多,设面积最大的草坪至少栽种X棵,则其他的草坪可栽种X-1,X-2, X-3,X-4棵,则X+X-1+X-2+X-3+X-4=21,即5X-10=21,X=6.2,而X必须取整数,所以X=7。因此,答案选择A选项。
2011-河北-44.某中学在高考前夕进行了四次语文模拟考试,第一次得90分以上的学生为70%,第二次是75%,第三次是85%,第四次是90%,请问在四次考试中都是90分以上的学生至少是多少?()
A.40% B.30%
C.20% D.10%
【答案】C
【解析】设共有100人考试,则得90分以上的同学依次有70、75、85、90人,因此没过90分的依次有30、25、15、10人,则没过90分的最多有30+25+15+10=80(人),故90分以上的至少有100-80=20(人),占20%。因此,答案选择C选项。
2010-河北-39.某中学初二年级共有620名学生参加期中考试,其中语文及格的有580名,数学及格的有575名,英语及格的有604名,以上三门功课都及格的至少有多少名同学?()
A.575 B.558
C.532 D.519
【答案】D
【解析】要使三门功课都及格的人数最少,则需要三门功课的人中,每人都只有一门不及格,不及格的人数总数为(620-575)+(620-580)+(620-604)=101(人),故三门功课都及格的人数最少为620-101=519(名)。因此,答案选择D选项。
2009-河北-108.100名村民选一名代表,候选人是甲、乙、丙三人,每人只能投票选举一人,得票最多的人当选。开票中途累计前61张选票中,甲得35票,乙得10票,丙得16票。在尚未统计的选票中,甲至少再得多少票就一定当选?()
A.11 B.12
C.13 D.14
【答案】A
【解析】本题属于构造数列题型。甲至少再得多少票就一定当选的意思就是票数最多的甲最少得多少张票。我们可以发现对甲最有竞争力的就是丙,所以最极端的情况就是甲取得了x票,剩下的39-x全部投给了丙,这样甲也当选了。即满足35+x>16+39-x,即2X>20,X>10,所以甲至少要得11张。因此,答案选择A选项。
第四章 方程与不等式 方程法是整个数学运算的第一重要方法(通常可知列不求)
主要题型:盈亏问题,鸡兔同笼问题,和差倍比问题,牛吃草问题 一,基本方程思想(巧设未知数,快速解方程)
1.当方程有小数或是分数而计算复杂时,同乘化整。
2.方程组中若存在多个未知数,尽量消去无关未知数,保留所求未知数。3.方程中存在一些无关未知数,完全可以作为整体直接消去。4.比例型的方程形式,可能存在很好的化简方法。5.未知数转变且无法消除时,可直接令x=0得到答案。6.若题目中存在xy这样的乘积项,先化简或消掉。
(1)A/B=C/D→A+C/B+D=A-C/B-D(当两个分子或分母的和或差为常数时)(2)A/B=C/D→A±B/B=C±D/D→A/B±A=C/D±C(条件同上)整体解方程—整体代换,无需求出每一个未知数。逆向解方程—倒推法。
二,不定方程(组)--最新考察热点 多元不定方程或方程组:特值代入法;
二元不定方程:带入试值法,令最复杂的一项为“0”; 三,不等式—直接解出满足不等式的范围
列出不等式,找好是“>”还是“≥”,是“<”还是“≤”。四,盈亏与鸡兔同笼问题
列方程,解方程是最高效,最准确的方法。五,和差倍比
第五章 基础运算模块 一,纯粹计算问题 基本公式:
a²-b²=(a+b)(a-b);a+b≥2跟下ab;ab≤(a+b/2)²→(a-b)²≥0;(a±)²= a²+2ab+b²; a*b*c≤(a+b+c/3)³
a的m次方*a的n次方=a的m+n次方,a的m次方的n次方=a的m*n次方;(a*b)的n次方= a的n次方+b的n次方
※ 弃九法※(当整数范围内+,-,*三种运算方法中可使用)
1.在计算中,将计算过程中数字全部除以9,留其余数进行相同的计算;
2.计算中如有数字不在0—8之间,通过加上或减去9或9 的倍数调整到0—8之间; 3.将选项除以9留其余数,与上面计算结果对照,得到答案。注意循环数的求法,因数分解!※ 裂项相消公式
B/M*(M+A)=(1/M-1/M+A)*B/A(“小分之一”减去“大分之一”乘以二者差分之分子)在比较复杂的计算中,将相近的数化为相同,从而作为一个整体相抵消
乘方尾数的算法:地鼠留个位,指数除以4,留余数,余数为零,去4!1.直接计算题;2.弃九推断;3.乘法分配率;4.循环数字; 5.比较大小; 6.裂项相消;7.整体消去; 8.乘方尾数。二,运算拓展模型
1.定义运算:XΦY,X△Y,2.抽象函数f(x)3.恒等变换; 4.二次方程; 5.极值求解 一,数列综合运算 1.等比数列:
设首项为;末项为 , 项数为 , 公差为 , 前 项和为
则有:① ② ③ ④ 其中 :
=平均数*项数=中位数*项数;
通项公式:
等差数列奇数项求和=项数² 2.等比数列
等比数列求和公式:an=a1*q^(n-1)
第六章 计数问题模块 一,容斥原理
(一)两集合容斥原理
1.当题目中出现①满足条件A的数目,②满足条件B的数目,③同时满足A,B的数目,④条件A,B都不满足的数目,⑤总数
公式:满足A+满足B-满足A,B+A,B都不满足=总数 2.若出现:只满足条件A或只满足条件B→用两集合图示标数。
(二)三集合容斥原理
1.关于满足两个条件的描述,如果题目只涉及①满足A,B条件;②满足B,C条件;③满足A,C条件的数目→标准公式
2.若题目涉及“只满足条件A,B的数目”,一般采用三集合图示标数; 3.若题目涉及“满足一个条件的数目”和“满足两个条件的数目”; 只给出一个总数而不是分项数字,一般用“三集合整体重复型”。
※标准型公式:1.两个集合的容斥关系公式:A∪B = A+BA∩BC∩A +A∩B∩C 如左边代表至少满足三个条件之一的情况,也等于总数减去三个条件都不满足的情况;
(三)三集合图示标数型
1.特别注意“满足某条件”和“仅满足某条件”的区别; 2.特别注意有没有“三个条件都不满足”的情况; 3.标数时,注意从中间向外围标记。
(四)三集合整体重复型
在三集合容斥题型中,假设三个条件的元素数量分别是A,B,C,而至少满足三个条件之一的元素的总量为W;其中:满足一个条件的元素数量为X,满足两个人条件的元素数量为Y,满足三个条件的元素数量为Z。① W=X+Y+Z;② A+B+C=X*1+Y*2+Z*3 详细推理:
1、等式右边改造 = {[(A+BB∩C]-C∩A }+ A∩B∩C
2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C
3、等式右边()里指的是下图的1+2+3+4+5+6六部分: 那么A∪B∪C还缺部分7。
4、等式右边[]号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分,减去B∩C(即5+6两部分)后,还多加了部分4。
5、等式右边{}里减去C∩A(即4+5两部分)后,A∪B∪C又多减了部分5,则加上A∩B∩C(即5)刚好是A∪B∪C。如图所示:
二,基础排列组合
加法原理 排列:与顺序有关,乘法原理 组合:与顺序无关,排列公式: 组合公式:
逆向公式:满足条件的情况—不满足条件的情况数。三,拓展排列组合
1.相邻问题—捆绑法—先考虑相邻元素,然后将其视为一个整体考虑;
2.不邻问题—插孔法—先考虑剩余元素,然后将不邻元素进行插孔(路灯熄灭问题)3.错位配列—0,1,2,9,44,256; 4.重复剔除型
平均分租时,一旦有N个组人数相同,最后都要除以Ann以剔除重复情况,例:将6个人平均分成3组,请问一共有多少种分法? C62*C42*C22/A33=15 5.圆桌排列:N个人排成一圈,有Ann/n=(n-1)!种方法;
6.分配插板型(将M个元素,分到N组,每组至少分一个),Cm-1,n-1 需满足条件:①元素相同,②分配到不同的组,③每个组至少分一个(三者缺一不可)
① 如果没有至少分到一个,只说把6个苹果分到3组,可以先借三个苹果没人分一个,再按照公式去分;
② 如果题干说至少分得N的元素,则分给每组N-1元素,构造成每组至少分得一个的情况。经典例题分析: 难点:
⑴从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; ⑵限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
⑶计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; ⑷计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。例题
【例1】 从1、2、3、„„、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有多少个?
分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。设a,b,c成等差,∴ 2b=a+c,可知b由a,c决定,又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,„„,19或2,4,6,8,„„,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。
【例2】 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向
数量关系知识点总结(精选合集)
本文2025-01-07 11:46:49发表“其他总结”栏目。
本文链接:https://www.sowenku.com/article/14870.html
- 专题13 大作文-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题13 大作文-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题12 微写作-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题12 微写作-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题11 名著阅读-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题11 名著阅读-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题10 语言文字运用(选择题组)-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题10 语言文字运用(选择题组)-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx
- 专题09 语言文字运用(选择+简答题)-五年(2019-2023)高考语文真题分项汇编(全国通用) (解析版).docx
- 专题09 语言文字运用(选择+简答题)-五年(2019-2023)高考语文真题分项汇编(全国通用) (原卷版).docx