生物工艺学知识点总结

栏目:其他总结发布:2025-01-07浏览:1收藏

生物工艺学期末复习资料

生物工艺学知识点总结

第一章

绪论

1、生物工艺学(biotechnology):

又称为生物技术,它是应用自然科学及工程学原理,依靠生物作用剂(biological

agents)的作用将物料进行加工以提供产品或社会服务的技术。

特点:多学科和多技术的结合;生物作用剂(生物催化剂)的参与;应用大量高、精、尖设备;建立工业生产过程或进行社会服务。

生物工艺学包含的四大块内容:原料预处理和培养基的制备、菌种的选育及代谢调节、生物反应过程的工艺控制、下游加工。

2、生物催化剂是游离的或固定化的细胞或酶的总称。

生物催化剂特点:

优点:①常温、常压下反应

②反应速率大

③催化作用专一

④价格低廉

缺点:稳定性差

控制条件严格

易变异(细胞)

生物反应过程实质是利用生物催化剂以从事生物技术产品的生产过程(process

engineering)。

3、生物技术研究的主要内容:

基因工程(DNA重组技术,gene

engineering)、细胞工程(cell

engineering)、酶工程(enzyme

engineering)、发酵工程(fermentation

engineering)、蛋白质工程(protein

engineering)、第二章

菌种的来源

1、工业生产常用的微生物

细菌、酵母菌、霉菌、放线菌、担子菌、藻类。

2.工业生产对微生物菌种的要求

培养基成分简单、廉价、来源广。

生长迅速、发酵周期较短,抗杂菌和噬菌体能力强。

目的产物产量高,产物类似物的产量低,且目的产物最好能分泌到胞外,利于产物分离。

对温度、pH、离子强度、剪切力等环境因素不敏感。

对溶氧的要求低,便于培养及降低能耗。

菌种遗传性能稳定,不易变异和退化,不产生任何有害的生物活性物质和毒素。

3、分离微生物新种的过程大体可分为采样、增殖、纯化和性能测定。

含微生物材料的预处理方法:物理方法(加热);化学方法(pH);诱饵法。

诱饵技术:将固体基质加到待检的土壤或水中,待其菌落长成后再铺平板。

分离的效率影响因素

1)培养基的养分;

2)pH;

3)加入的选择性抑制剂。

4、高产培养基成分的选择准则:

制备一系列的培养基,其中有各种类型的养分成为生长限制因素(C、N、P、O);

使用一聚合或复合形式的生长限制养分;

避免使用容易同化的碳(葡萄糖)或氮(NH4+),它们可能引起分解代谢物阻遏;

确定含有所需的辅因子(Co2+,Mg2+,Mn2+,Fe2+)

加入缓冲溶液以减小pH变化。

5、代谢控制发酵(Metabolic

Control

fermentation):用人工诱变的方法,有意识地改变微生物的代谢途径,最大限度地积累产物,这种发酵形象地称为代谢控制发酵,最早在氨基酸发酵中得到成功应用。

6、菌种的衰退表观现象有哪些?

目的产物的产量下降

营养物质代谢和生长繁殖能力下降

发酵周期延长

抗不良环境的性能减弱

7、菌种的衰退的原因

菌种保藏不当

提供不了当的条件或不利的条件

经诱变得到的新菌株发生回复突变

8、菌种的复壮方法:

纯种分离

通过寄主体进行复壮

淘汰已衰退的个体

9、菌种的保藏的原理

根据菌种的生理生化特点,人工创造条件,使孢子或菌体的生长代谢活动尽量降低,以减少其变异。一般可通过保持培养基营养成分在最低水平,缺氧状态,干燥和低温,使菌种处于“休眠”状态,抑制其繁殖能力。

10、菌种的保藏方法:

A

斜面冰箱保藏法

B

沙土管保藏法

C

石蜡油封存法

D

真空冷冻干燥保藏法

E

液氮超低温保藏法

11与生物工程相关性较大的国内主要菌种保藏机构包括:

工业微生物菌种保臧管理中心、农业微生物菌种保藏管理中心、普通微生物菌种保臧管理中心、抗生素菌种保藏管理中心

从自然环境中分离微生物菌种的的工艺过程

12.生物工程专业相关的主要数据库有哪些?

维普中文科技期刊数据库、中国期刊全文数据库、万方系列数据库、science

online、springer

link等。

第三章

菌种选育

1、常用菌种选育方法

(1)自然选育:是指在生产过程中,不经过人工处理,利用菌种的自发突变(spontaneous

mutation)而进行菌种筛选的过程。

特点:自发突变的频率较低,变异程度不大。所以该法培育新菌种的过程十分缓慢。

应用:自然选育在工业生产中可以达到纯化菌种,防止菌种衰退,稳定生产,提高产量的目的。

(2)诱变育种:是利用物理或化学诱变剂处理均匀分散的微生物细胞群,促进其突变率大幅度提高,然后采用简便、快速和高效的筛选方法,从中挑选少数符合育种目的的突变株,以供生产实践或科学研究使用。诱变育种的理论基础是基因突变。

诱变育种的典型流程

常用诱变剂:物理诱变剂、化学诱变剂(碱基类似物、与碱基反应的物质、在DNA分子中插入或缺失一个或几个碱基物质)、生物诱变剂

(3)分子育种(DNA重组、基因工程):用人为的方法将所需的某一供体生物的遗传物质DNA分子提取出来,在离体条件下切割后,把它与作为载体的DNA分子连接起来,然后导入某一受体细胞中,让外来的遗传物质在其中进行正常的复制和表达,从而获得新物种的一种崭新的育种技术。

(4)杂交育种(Hybridization):

常规杂交育种(Hybridization):一般是指人为利用真核微生物的有性生殖或准性生殖或原核微生物的接合、F因子转移、转导和转化等过程,促使两个具有不同遗传性状的菌株发生基因重组,以获得性能优良的生产菌株。

原生质体融合技术:通过人工方法,使遗传性状不同的两个细胞的原生质体发生融合,并产生重组子的过程,亦称为“细胞融合”(cell

fusion)。

原生质体融合的基本过程:原生质体形成、原生质体融合、原生质体的再生。

3.抗噬菌体菌株的检出方法:

平板点滴法、单层琼脂法、双层琼脂法。

4、工程菌的不稳定性表现

质粒的不稳定(质粒的丢失、重组质粒的DNA片段脱落)、表达产物的不稳定

第三章

微生物的代谢调节

1、微生物代谢调节方式

概念:微生物在生长过程中机体内的复杂代谢过程是相互协调和高度有序的,并对外界环境的改变能够迅速做出反应,其原则是经济合理地利用和合成所需的各种物质和能量,使细胞处于平衡生长状态。微生物代谢分为初级代谢和次级代谢。

代谢流向的调控分为代谢物的合成和代谢物的降解;通过快速启动蛋白质的合成和有关的代谢途径,平衡各代谢物流和反应速率来适应外界环境的变化。

代谢速度的调控分为酶量(粗调)(酶合成的诱导和酶合成的阻遏)和酶活(细调)(酶活性的激活、酶活性的抑制)

反馈阻遏是转录水平的调节,产生效应慢;影响催化一系列反应的多个酶

反馈抑制是酶活性水平调节,产生效应快。只对是一系列反应中的第一个酶起作用

2、微生物初级代谢调节包括酶活调节、酶合成调节、遗传控制

(1)酶活性的调节(细调):一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率。酶活调节的影响因素包括:底物和产物的性质和浓度、压力、pH、离子强度、辅助因子以及其他酶的存在等等。特点是反应快速。

酶活性的调节包括:酶活性的激活和酶活性的抑制(反馈抑制)

(2)酶合成的调节:通过调节酶合成的量来控制微生物代谢速度的调节机制。这类调节在基因转录水平上进行,对代谢活动的调节是间接的、缓慢的(3)酶合成的阻遏:在某代谢途径中,当末端产物过量时,微生物的调节体系就会阻止代谢途径中包括关键酶在内的一系列酶的合成,从而彻底地控制代谢,减少末端产物生成,这种现象称为酶合成的阻遏。

末端代谢产物阻遏:由于某代谢途径末端产物的过量积累而引起酶合成的(反馈)阻遏。

分解代谢物阻遏:当细胞内同时存在两种可利用底物(碳源或氮源)时,利用快的底物会阻遏与利用慢的底物有关的酶合成。

这种阻遏并不是由于快速利用底物直接作用的结果,而是由这种底物分解过程中产生的中间代谢物引起的,所以称为分解代谢物阻遏(过去被称为葡萄糖效应)。

3、改变细胞膜通透性的方法

A限制培养基中生物素浓度在1~5mg/L,控制细胞膜中脂质的合成;

B

加入青霉素,抑制细胞壁肽聚糖合成中肽链的交联;

C

加入表面活性剂如吐温80或阳离子表面活性剂(如聚氧化乙酰硬脂酰胺),将脂类从细胞壁中溶解出来,使细胞壁疏松,通透性增加;

D

控制Mn2+、Zn2+的浓度,干扰细胞膜或细胞壁的形成;

E

可以通过诱变育种的方法,筛选细胞透性突变株。

5、人工控制微生物代谢的两种手段:

(1)生物合成途径的遗传控制

(2)发酵条件的控制

6.生物素对谷氨酸合成的影响

(1)生物素是丙酮酸羧化酶的辅酶,生物素在低于亚适浓度之前,增加生物素有利于丙酮酸的羧化产生草酰乙酸,进而有利于谷氨酸的合成;

(2)生物素是催化脂肪酸生物合成的初始酶乙酰辅酶A羧化酶的辅酶,该酶催化乙酰辅酶A羧化生成丙二酸单酰辅酶A,再经一系列转化合成脂肪酸,而脂肪酸又是构成细胞膜磷脂的主要成分,因此生物素可间接地影响细胞膜的透性。

第四章

微生物次级代谢与调节

1、次级代谢产物:某些微生物在生命循环的某一个阶段产生的物质,它们一般是在菌生长终止后合成的。其生物合成至少有一部分是与核内和核外的遗传物质有关,同时也与这类遗传信息产生的酶所控制的代谢途径有关。微生物产生的次级代谢物有抗生素、毒素、色素和生物碱等。

2、初级与次级代谢途径相互连接

次级代谢物通常是由初级代谢中间体经修饰后形成的修饰初级代谢中间体的三种生化过程

生物氧化与还原、生物甲基化、生物卤化

3、前体:指加入到发酵培养基中的某些化合物,它能被微生物直接结合到产物分子中去,而自身的结构无多大变化有些还具有促进产物合成的作用。

中间体是指养分或基质进入一途径后被转化为一种或多种不同的物质,他们均被进一步代谢,最终获得该途径的终产物。

4、次级代谢物生物合成的原理

①一旦前体被合成,在适当条件下它们便流向次级代谢物生物合成的专用途径。

②在某些情况下单体结构单位被聚合,形成聚合物。这些特有的生物合成中间体产物需做后几步的结构修饰,修饰的程度取决于产生菌的生理条件。有些复杂抗生素是由几个来自不同生物合成途径组成的。

第五章

发酵培养基

1、培养基通常指人工配制的供微生物生长、繁殖、代谢和合成所需产物的营养物质和原料,同时,培养基也为微生物等提供除营养外的其它生长所必需的环境条件

培养基提供微生物生长繁殖和产物合成所需的碳源、氮源、无机盐、生长因子、水和氧气等

2、工业发酵培养基的要求

①培养基能够满足产物最经济地合成②发酵后所形成的副产物尽可能的少

③培养基的原料应因地制宜,价格低廉;且性能稳定,资源丰富,便于采购运输,适合大规模储藏,能保证生产上的供应。

④所用培养基应能满足总体工艺的要求,如不应影响通气、提取、纯化及废物处理等。

3、工业上常用的碳源:葡萄糖、乳糖、淀粉、蔗糖

工业上常用的氮源:无机氮源:氨水,铵盐,硝酸盐等。有机氮源:玉米浆、豆饼粉、花生饼粉、棉籽粉、鱼粉、酵母浸出液等。生理酸性物质,如硫酸铵。生理碱性物质,如硝酸钠。

提供生长因子的农副产品原料:

1)

玉米浆

2)

麸皮水解液

3)

糖蜜

4)

酵母:可用酵母膏、酵母浸出液或直接用酵母粉。

产物促进剂是指那些非细胞生长所必需的营养物,又非前体,但加入后却能提高产量的添加剂。

4、发酵培养基的设计和优化方法

正交试验设计、均匀设计、响应面分析

正交试验设计:利用正交表来安排与分析多因素试验的一种设计方法。它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析,了解全面试验的情况,找出最优的水平组合。

正交实验数据分析,见教材P112-114例题,表4-16,同时确定因素的主次顺序、各因素的优水平、各因素水平的最优组合。小数点后保留一位。

响应面分析方法:适宜于解决非线性数据处理的相关问题,它囊括了试验设计、建模、检验模型的合适性、寻求最佳组合条件等众多试验和统计技术;通过对过程的回归拟合和响应曲面、等高线的绘制、可方便地求出相应于各因素水平的响应值。在各因素水平的响应值的基础上,可以找出预测的响应最优值以及相应的实验条件。

完整响应面分析方法实验设计通常包括:(1)Plackett—Burman实验设计,(2)最陡爬坡实验,(3)中心组合实验设计三个过程。

第六章

发酵培养基灭菌和空气净化

在发酵工业生产中,为了保证纯种培养,在生产菌种接种培养前,要对培养基、空气系统、消泡剂、流加物料、设备、管道等进行灭菌,还要对生产环境进行消毒,防止杂菌和噬菌体的大量繁殖。

常用的灭菌方法有:干热灭菌法、火焰灭菌法、电磁波射线灭菌法、湿热灭菌法(主要是高压蒸汽灭菌)、化学药剂灭菌法、过滤除菌法等

1.微生物热阻:微生物在某一特定条件下(主要是温度和加热方式)下的致死时间。

2.对数残留定律中各符号的意义。

3.理论灭菌时间的计算

3.1间歇实罐灭菌时间的计算

3.2连续灭菌的灭菌时间计算:

4.灭菌温度的选择:随着温度升高,灭菌速率常数增加的倍数大于培养基中营养成分的分解速率常数的增加倍数。即当灭菌温度升高时,微生物杀灭速度提高,培养基营养成分破坏的速度减慢。

高温瞬时灭菌法可以减少培养基营养成分的破坏的原理:

随着温度升高,灭菌速率常数增加的倍数大于培养基中营养成分的分解速率常数的增加倍数。即当灭菌温度升高时,微生物杀灭速度增加较快,而培养基营养成分破坏的速度增加较慢。因此,采用较高的温度,较短的灭菌时间,可以减少培养基营养成分的破坏。

5.影响培养基灭菌的因素

:所污染杂菌的种类、数量、灭菌温度和时间,培养基成分、pH值、培养基中颗粒、泡沫等对培养基灭菌也有影响。

6.无菌空气:指通过除菌处理使空气中含菌量降低至一个极低的百分数,从而能控制发酵污染至极小机会。此种空气称为“无菌空气”。

7.介质过滤除菌是使空气通过经高温灭菌的介质过滤层,将空气中的微生物等颗粒阻截在介质层中,而达到除菌的目的。是大多数发酵厂广泛采用的方法。按除菌机制可分为:

绝对(表面)过滤和深层介质过滤。

介质过滤除菌的机理:空气流通过这种介质过滤层时,借助惯性碰撞、拦截滞流、静电吸附、扩散等作用,将其尘埃和微生物截留在介质层内,达到过滤除菌目的。

第七章

种子的扩大培养

1、种子扩大培养:指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程。

这些纯种培养物称为种子

2、种子扩大培养的目的与要求

(1)种子扩培的目的①接种量的需要

菌种的驯化

③缩短发酵时间、保证生产水平

(2)种子的要求

①菌种细胞的生长活力强,移种至发酵罐后能迅速生长,延迟期短

生理性状稳定③菌体总量及浓度能满足大容量发酵罐的要求④无杂菌污染⑤保持稳定的生产能力。

3、种子罐级数:是指制备种子需逐级扩大培养的次数,取决于菌种生长特性、孢子发芽及菌体繁殖速度、所采用发酵罐的容积。

种子罐级数受发酵规模、菌体生长特性、接种量的影响。级数大,难控制、易染菌、易变异,管理困难,一般2~4级。

4、种子制备分两个阶段:实验室种子制备阶段

生产车间种子制备阶段

好氧微生物菌种扩培常用设备:超净工作台、震荡培养箱、种子罐等。

5、种龄:是指种子罐中培养的菌丝体开始移入下一级种子罐或发酵罐时的培养时间。

接种量:是指移入的种子液体积和接种后培养液体积的比例。

通常接种量:细菌1-5%,酵母菌5-10%,霉菌7-15%,有时20-25%

青霉素生产的种子制备过程:

安瓿管→斜面孢子→大米孢子→一级种子→二级种子→发酵

第八章

发酵工艺控制

1、微生物发酵的生产水平取决于生产菌种本身的性能和合适的环境条件。

2、发酵过程的代谢变化

从产物形成来说,代谢变化就是反映发酵中的菌体生长、发酵参数的变化(培养基和培养条件)和产物形成速率这三者之间的关系。在分批培养过程中根据产物生成是否与菌体生长同步的关系,将微生物产物形成动力学分为①

生长关联型

和②

非生长关联型。

3、发酵方式

(1)补料-分批发酵:指分批培养过程中,间歇或连续地补加新鲜培养基的培养方法。

优点在于使发酵系统中维持很低的基质浓度。

低基质浓度的优点:①

可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②

克服养分的不足,避免发酵过早结束。

(2)半连续发酵:是指在补料-分批发酵的基础上,间歇地放掉部分发酵液的培养方法。

优点:①

可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②

克服养分的不足,避免发酵过早结束;③缓解有害代谢产物的积累。

(3)连续发酵:指培养基料液连续输入发酵罐,并同时放出含有产品的发酵液的培养方法。在这样的环境中培养,菌的生长就受到所提供基质的限制,培养液中的菌体浓度能保持一定的稳定状态。

与传统的分批发酵相比,连续培养有以下优点:

维持低基质浓度:可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;

避免培养基积累有毒代谢物;

可以提高设备利用率和单位时间的产量,节省发酵罐的非生产时间;

便于自动控制。

4、发酵控制参数

按性质分类:物理参数、化学参数、生物参数

按检测手段分类:①直接参数:⑴在线检测参数

离线检测参数

②间接参数

5、发酵热

发酵热就是发酵过程中释放出来的净热量。

Q发酵=Q生物+

Q搅拌-

Q蒸发-

Q显-

Q辐射

生物热(biological

heat)是菌体生长过程中直接释放到体外的热能,使发酵液温度升高。

搅拌热(agitation

heat)是搅拌器引起的液体之间和液体与设备之间的摩擦所产生的热量。

6.pH值对发酵的影响

(1)影响酶的活性,当pH值抑制菌体中某些酶的活性时,会阻碍菌体的新陈代谢;

(2)影响微生物细胞膜所带电荷的状态,改变细胞膜的通透性,影响微生物对营养物的吸收和代谢产物的排泄;影响培养基中某些组分的解离,进而微生物对这些成分的吸收;

(3)pH值不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例发生改变。

7、引起发酵液pH值异常波动的因素

pH值的变化决定于所用的菌种、培养基的成分和培养条件

pH下降:

培养基中碳、氮比例不当。碳源过多,特别是葡萄糖过量,或者中间补糖过多加上溶氧不足,致使有机酸大量积累而pH下降;

消泡剂加得过多;

生理酸性物质的存在,铵被利用,pH下降。

pH上升:

培养基中碳、氮比例不当。氮源过多,氨基氮释放,使pH上升;

生理碱性物质存在;

中间补料氨水或尿素等碱性物质加入过多。

8、临界氧浓度(critical

value

of

dissolved

oxygen

concentration)

:指不影响菌的呼吸所允许的最低氧浓度。如对产物形成而言便称为产物合成的临界氧浓度。

呼吸强度又称氧比消耗速率,是指单位质量的干菌体在单位时间内所吸取的氧量,以

Q

O2表示,单位为mmolO2/(g干菌体·h)。

耗氧速率又称摄氧率,是指单位体积培养液在单位时间内的吸氧量,以r表示,单位为mmol

O2/(L·h)。

9、引起溶氧异常下降,可能有下列几种原因:

污染好气性杂菌,大量的溶氧被消耗掉,可能使溶氧在较短时间内下降到零附近,如果杂菌本身耗氧能力不强,溶氧变化就可能不明显;

菌体代谢发生异常现象,需氧要求增加,使溶氧下降;

某些设备或工艺控制发生故障或变化,也可能引起溶氧下降,如搅拌功率消耗变小或搅拌速度变慢,影响供氧能力,使溶氧降低。

10、泡沫的形成及其对发酵的影响

在大多数微生物发酵过程中,通气、搅拌以及代谢气体的逸出,再加上培养基中糖、蛋白质、代谢物等表面活性剂的存在,培养液中就形成了泡沫。

形成的泡沫有两种类型:

一种是发酵液液面上的泡沫,气相所占的比例特别大,与液体有较明显的界限,如发酵前期的泡沫;

另一种是发酵液中的泡沫,又称流态泡沫(fluid

foam),分散在发酵液中,比较稳定,与液体之间无明显的界限

大量的泡沫引起的负作用:

发酵罐的装料系数减少、氧传递系统减小;

增加了菌群的非均一性;

造成大量逃液,增加染菌机会;

严重时通气搅拌无法进行,菌体呼吸受到阻碍,导致代谢异常或菌体自溶;

消泡剂的添加将给提取工序带来困难。

泡沫的消除

调整培养基中的成分(如少加或缓加易起泡的原料)或改变某些物理化学参数(如pH值、温度、通气和搅拌)或者改变发酵工艺(如采用分次投料)来控制,以减少泡沫形成的机会。

采用菌种选育的方法,筛选不产生流态泡沫的菌种,来消除起泡的内在因素。

采用机械消泡或消泡剂来消除已形成的泡沫。

常用的消泡剂有4大类:

天然油脂类、脂肪酸和酯类、聚醚类、硅酮类

11、造成染菌的主要原因

设备渗漏

空气带菌

种子带菌

灭菌不彻底

技术管理不善

第九章

生物反应动力学

1.微生物反应动力学

研究各种环境因素与微生物代谢活动之间相互作用随时间而变化的规律。

具体研究内容:微生物生长过程中质量的平衡;发酵过程中菌体的生长速率、基质消耗速率和产物生成速率的相互关系

;环境因素对这三种速率的影响。

2.分批发酵工艺中缩短和消除延迟期的方法有:

增加接种量、采用最适种龄、选用繁殖速度快的菌种以及尽量保持接种前后所处的培养基介质和条件一致。

3.Monod方程的参数求解:

µmS

KS+S

µ=

S:限制性基质浓度mol/m3;KS:饱和常数mol/m3

例:在一定条件下培养大肠杆菌,得如下数据:

S(mg/l)

153

221

μ(h-1)

0.06

0.24

0.43

0.66

0.70

利用MONOD方程作图如下,求在该培养条件下,求大肠杆菌的μmax,KS和td?

解:据图可知,:

1/µmax=0.95;KS/µmax=90;根据

可以求得:

μmax=1.1

(h-1);

KS=99mg/L,td=ln2/μmax=0.63h

4.连续培养动力学

稀释率:单位时间内加入的培养基体积占发酵罐内培养基体积的分率

5.细胞的物料平衡

单级连续培养的细胞物料平衡方程如下:

根据单级连续培养的细胞物料平衡方程,按照比生长速率μ和稀释率D的大小关系,讨论培养罐内细胞浓度和营养物质浓度的变化情况。

答:

μ

D:

dX/dt

>0,培养罐内细胞浓度不断增加,营养物质浓度随之减少

μ

D:则dX/dt

<0,罐内细胞浓度不断减少,最后导致X趋近0.μ

=

D:则dX/dt

=0,细胞浓度不随时间而变化,即培养达到稳定状态。

6.限制性基质的物料平衡

临界稀释率(DC):

发生洗出时的稀释率。

操作的稀释率不是可以随意改变的,而有一个限度。超过此稀释率时连续培养就无法进行,临界稀释率取决于加料中的限制性基质浓度,即细胞在此培养基中能达到的最大比生长速率。DC=

μmS

/(KS+S)

第十章 下游加工过程概论

1、下游技术(工程)

(downstream

processing):对于由生物界自然产生的或

解锁后支持完整在线阅读或下载编辑海量优质内容资源

生物工艺学知识点总结

生物工艺学期末复习资料生物工艺学知识点总结第一章绪论1、生物工艺学(biotechnology):又称为生物技术,它是应用自然科学及工程学原理,…
点击下载
分享:
热门文章
    热门标签
    确认删除?